
Promira Serial Platform – I C/SPI Active
Applications

The Promira Serial Platform with I C/SPI Active applications
allows developers to interface a host PC to a downstream
embedded system environment and transfer serial messages
using the I C and SPI protocols.

Promira Serial Platform – I C/SPI Active Applications
Features

• I C – Two-wire interface
◦ Standard mode (100 kHz)
◦ Fast mode (400 kHz)
◦ Fast mode Plus (1 MHz)
◦ High Speed mode (3.4 MHz)
◦ Master and slave functionality
◦ Master / Slave Bit Rate 1 kHz to 3.4 MHz

• SPI – Four- to Six-wire Interface
◦ Single, Dual, and Quad SPI functionality
◦ Master and Slave functionality
◦ Master Bit Rate 31 kHz to 80 MHz
◦ Slave Bit Rate 31 kHz to 20 MHz
◦ Up to eight SS signals
◦ Configurable slave select polarity

• GPIO – General Purpose Input/Output
◦ Up to sixteen general purpose signals on shared and

dedicated pins
◦ Selectable polarity

• Integrated Level Shifting
◦ Target Power 5V or 3.3V
◦ IO Power 0.9V - 3.45V

• Software
◦ Windows, Linux, and Mac OS X compatible
◦ Easy to integrate application interface
◦ Upgradeable Firmware over USB

Supported products:

Promira Serial Platform
I C/SPI Active Applications

User Manual v1.33.003

January 28, 2016

2

2

2

2

2

2

1 Revision History

1.1 Changes in version 1.33

• Initial revision.

• Fix I C 10 bit address issue.

• Update I C API examples.

• Update I C pull-ups values.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2 General Overview
The Promira Serial Platform with I C/SPI Active applications supports I C master/slave
and Single, Dual, and Quad SPI master/slave modes. The Promira platform with the I C/
SPI Active applications supports up to 8 SPI SS signals and up to 16 GPIO signals
depending on purchased application. Control Center Serial supports up to 8 GPIO
signals, GPIO00-GPIO07, while the API supports all available signals. The Promira
platform connects to an analysis computer via Ethernet or Ethernet over USB. The
applications installed on the Promira Serial Platform are field-upgradeable and future-
proof.

2.1 I C Background

2.1.1 I C History

When connecting multiple devices to a microcontroller, the address and data lines of
each devices were conventionally connected individually. This would take up precious
pins on the microcontroller, result in a lot of traces on the PCB, and require more
components to connect everything together. This made these systems expensive to
produce and susceptible to interference and noise.

To solve this problem, Philips developed Inter-IC bus, or I C, in the 1980s. I C is a low-
bandwidth, short distance protocol for on board communications. All devices are
connected through two wires: serial data (SDA) and serial clock (SCL).

Figure 1 : Sample I C Implementation. – Regardless of how
many slave units are attached to the I C bus, there are only
two signals connected to all of them. Consequently, there is
additional overhead because an addressing mechanism is
required for the master device to communicate with a
specific slave device.

Because all communication takes place on only two wires, all devices must have a
unique address to identify it on the bus. Slave devices have a predefined address, but
the lower bits of the address can be assigned to allow for multiples of the same devices
on the bus.

Promira I2C/SPI Active User Manual v1.33.003

2 2

2

2

2

2 2

2

2

3

In addition to stand-alone I C, I C is the basis of other common communication
standards including SMBus and PMBus.

2.1.2 I C Theory of Operation

I C has a master/slave protocol. The master initiates the communication. Here is a
simplified description of the protocol. For precise details, please refer to the Philips I C
specification. The sequence of events are as follows:

1. The master device issues a start condition. This condition informs all the slave
devices to listen on the serial data line for their respective address.

2. The master device sends the address of the target slave device and a read/write
flag.

3. The slave device with the matching address responds with an acknowledgment
signal.

4. Communication proceeds between the master and the slave on the data bus.
Both the master and slave can receive or transmit data depending on whether the
communication is a read or write. The transmitter sends 8 bits of data to the
receiver, which replies with a 1 bit acknowledgment.

5. When the communication is complete, the master issues a stop condition
indicating that everything is done.

Figure 2 shows a sample bitstream of the I C protocol.

Figure 2 : I C Protocol. – Since there are only two wires,
this protocol includes the extra overhead of the addressing
and acknowledgement mechanisms.

2.1.3 I C Features

I C has many features other important features worth mentioning. It supports multiple
data speeds: standard (100 kbps), fast (400 kbps), fast mode plus (1000 kbps), and high
speed (3.4 Mbps) communications.

Promira I2C/SPI Active User Manual v1.33.003

2 2

2

2

2

2

2

2

2

4

Other features include:

• Built-in collision detection,

• 10-bit Addressing,

• Multi-master support,

• Data broadcast (general call).

For more information about other features, see the references at the end of this section.

2.1.4 I C Benefits and Drawbacks

Since only two wires are required, I C is well suited for boards with many devices
connected on the bus. This helps reduce the cost and complexity of the circuit as
additional devices are added to the system.

Due to the presence of only two wires, there is additional complexity in handling the
overhead of addressing and acknowledgments. This can be inefficient in simple
configurations and a direct-link interface such as SPI might be preferred.

2.1.5 I C References

• I C – Embedded Systems Academy I C Bus Technical Overview and Frequently
Asked Questions

• I C – NXP I C bus specification and user manual

2.2 SPI Background

2.2.1 SPI Background

The SPI protocol includes single SPI interface, dual SPI interface, and quad SPI
interface. This protocol functions on a master-slave paradigm that is ideally suited to
data streaming applications.

2.2.2 Single SPI interface

Single SPI interface requires four signals: Serial Clock (SCLK), Slave Select (SS),
Master Out Slave In (MOSI), and Master In Slave Out (MISO). One SPI master device
can be connected to multiple SPI slave devices. The SCLK, MOSI, and MISO signals
can be shared by multiple slave devices. However, each slave device has a unique SS
signal.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2 2

2 2

5

http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf

SCLK is generated by the master device and is used for synchronization. SS is pulled
low or high by the master in order to select a device for communication. MOSI is used to
transfer data from the master device to the slave device. MISO is used to transfer data
from the slave device to the master device. Data is always transferred in both directions
in SPI, but an SPI device interested in only transmitting data can choose to ignore the
receive bytes. Likewise, a device only interested in the incoming bytes can transmit
dummy bytes.

The exchange itself has no pre-defined protocol. This makes it ideal for data-streaming
applications. Data can be transferred at high speed, often into the range of the tens of
megahertz. The flipside is that there is no acknowledgment, no flow control, and the
master may not even be aware of the slave's presence.

Figure 3 : Single SPI Interface Block Diagram

2.2.3 Dual SPI interface

Dual SPI interface requires four signals: Serial Clock (SCLK), Slave Select (SS), IO0 and
IO1. One SPI master device can be connected to multiple SPI slave devices. The SCLK,
IO0 and IO1 signals can be shared by multiple slave devices. However, each slave
device has a unique SS signal.

SCLK is generated by the master device and is used for synchronization. SS is pulled
low or high by the master in order to select a device for communication. IO1-0 are half-
duplex data signals that are used for both transmitting and receiving data for up to twice
the performance of single SPI.

Data is sent from the master to the slave as bit pairs on IO0 and IO1. Data is returned
from the slave to the master similarly as bit pairs on IO0 and IO1.

Promira I2C/SPI Active User Manual v1.33.003

6

2.2.4 Quad SPI interface

Quad SPI interface requires six signals: Serial Clock (SCLK), Slave Select (SS), IO0,
IO1, IO2, and IO3. One SPI master device can be connected to multiple SPI slave
devices. The SCLK and IO0-3 signals can be shared by multiple slave devices.
However, each slave device has a unique SS signal.

SCLK is generated by the master device and is used for synchronization. SS is pulled
low or high by the master in order to select a device for communication. IO0-3 are half-
duplex data signals that are used for both transmitting and receiving data for up to four
times the performance of single SPI.

Data is sent from the master to the slave as four bit (nibble) groups on IO0, IO1, IO2,
and IO3. Data is returned from the slave to the master similarly as four bit (nibble)
groups on IO0, IO1, IO2, and IO3.

2.2.5 SPI Modes

The master and slave need to agree about the data frame for the exchange. The data
frame is described by two parameters: clock polarity (CPOL) and clock phase (CPHA).
Both parameters have two states which results in four possible combinations. These
combinations are shown in figure 4.

Promira I2C/SPI Active User Manual v1.33.003

7

Figure 4 : SPI Modes –

2.2.6 SPI Clock modes

SPI has two clocks modes: Single Data Rate (SDR) and Double Data Rate (DDR).

In SDR mode the data is latched on one edge, either the rising edge or the falling edge
of the clock depend on the SPI mode (CPOL / CPHA). SDR mode supports single SPI,
dual SPI and quad SPI interfaces.

In DDR mode the data is latched on both the rising edge and the falling edge of the clock
depend on the SPI mode (CPOL / CPHA). DDR mode supports dual SPI and quad SPI
interfaces.

2.2.7 SPI Benefits and Drawbacks

SPI is a very simple communication protocol. It does not have a specific high-level
protocol which means that there is almost no overhead. Data can be shifted at very high
rates. This makes it very simple and efficient in a single-master single-slave scenario.

Because each slave needs its own SS, the number of traces required for single SPI is n
+3, where n is the number of SPI devices. This means increased board complexity when
the number of slaves is increased.

2.2.8 SPI References

• SPI – Wikipedia Serial Peripheral Interface Description

Promira I2C/SPI Active User Manual v1.33.003

8

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

3 Hardware Specifications

3.1 Pinouts

3.1.1 Connector Specification

The Promira Serial Platform with I C/SPI active applications target connector is a
standard 2x17 IDC male type connector 0.079x0.079″ (2x2 mm). The Promira platform
target connector allows for up to a 34-pin ribbon cable and connector.

Two cables are provided with the Promira platform:

• 34-10 cable: A standard ribbon cable 0.039″ (1 mm) pitch that is 5.12″ (130mm)
long with 2x17 IDC female 2x2mm (0.079x0.079) connector and 2x5 IDC female
2.54x2.54mm (0.10x0.10) connector. This provided target ribbon cable will mate
with a standard keyed boxed header.

• 34-34 cable: A standard ribbon cable 0.039″ (1 mm) pitch that is 5.12″ (130mm)
long with two 2x17 IDC female 2x2mm (0.079x0.079) connectors. This provided
target ribbon cable will mate with a standard keyed boxed header.

3.1.2 Orientation

The pin order of the 2x5 IDC female connector in the provided target ribbon 34-10 cable
is described in figure 5. When looking at the Promira platform front position with the
34-10 ribbon cable (figure 5), pin 1 is in the top left corner and pin 10 is in the bottom
right corner.

Figure 5 : The Promira platform front position with 34-10
cable.

The pin order of the 2x17 IDC female connector in the provided target ribbon 34-34
cable is described in figure 6. When looking at the Promira platform front position with

Promira I2C/SPI Active User Manual v1.33.003

2

9

the 34-34 ribbon cable (figure 6), pin 1 is in the top left corner and pin 34 is in the bottom
right corner.

Figure 6 : Promira platform front position with 34-34 cable

3.1.3 Pin Description

Table 1 (1) : Pin Description - Target Connector

Pin Symbol Description

1 SCL / GPIO00 I C Clock / GPIO signal 00.

3 SDA / GPIO01 I C Data / GPIO signal 01.

4 V Software configurable Vcc target power supply. NC/3.3V/5
V.

5 MISO / IO1 SPI Master In Slave Out / Dual/Quad SPI DQ1

6 V Software configurable Vcc target power supply.
NC/3.3V/5V.

7 SCLK SPI Clock.

8 MOSI / IO0 SPI Master Out Slave In / Dual/Quad SPI DQ0

9 SS0 / GPIO02 SPI Slave Select (Chip Select) 0 / GPIO signal 02.

11 IO2 Quad SPI DQ2.

13 IO3 Quad SPI DQ3.

14 SS2 / GPIO03 SPI Slave Select (Chip Select) 2 / GPIO signal 03.

15 SS1 / GPIO04 SPI Slave Select (Chip Select) 1 / GPIO signal 04.

17 SS3 / GPIO05 SPI Slave Select (Chip Select) 3 / GPIO signal 05.

19 SS4 / GPIO06 SPI Slave Select (Chip Select) 4 / GPIO signal 06.

20 SS5 / GPIO07 SPI Slave Select (Chip Select) 5 / GPIO signal 07.

21 GPIO09 GPIO signal 09.

22 V Software configurable Vcc IO level power supply. NC/0.9V
to 3.45V

Promira I2C/SPI Active User Manual v1.33.003

2

2

TGT

TGT

IO

10

23 GPIO10 GPIO signal 10.

24 V Software configurable Vcc IO level power supply. NC/0.9V
to 3.45V.

25 GPIO11 GPIO signal 11.

26 SS6 / GPIO08 SPI Slave Select (Chip Select) 6 / GPIO signal 08.

27 GPIO12 GPIO signal 12.

29 NC

31 GPIO13 GPIO signal 13.

32 GPIO14 GPIO signal 14.

33 SS7 / GPIO15 SPI Slave Select (Chip Select) 7 / GPIO signal 15.

2, 10, 12, 16,
18, 28, 30, 34

GND Ground Connection.

Note:

(1) The pin description in this table is for Promira FW v1.30/v1.30 and above. Promira
FW v1.30/v1.30 has new features (including higher SPI speed, dual SPI mode and
DHCP). Therefore, Promira FW v1.30/v1.30 pinout was modified compare to Promira
FW v1.10/v1.10. Specifically, the GPIO and SS signals were changed. For the pinout
description for Promira FW v1.10/v1.10, take a look at the Promira manual v1.10/v1.10.

3.2 I C Signaling Characteristics

3.2.1 Speed

The Promira Serial Platform I C master can operate at a maximum bitrate of 3.4 MHz
and supports many intermediate bitrates between 1 kHz and 3.4 MHz. The power-on
default bitrate for the I C master unit is 100 kHz.

For slave functionality, the Promira Serial Platform can operate at any rate between
1 kHz and 3.4 MHz.

It is not possible to send bytes at a throughput of exactly 1/8 times the bitrate. The I C
protocol requires that 9 bits are sent for every 8 bits of data. In addition, even though
there is no inter-byte delay for the most part of the I C transaction, the Promira Serial
Platform occasionally requires additional time to process the received bytes and set up
the next portion of the transaction. In this case, delay is inserted on the I C bus.

There can be extra overhead introduced by the operating system between calls to the
Promira API. These delays will further reduce the overall throughput across multiple

Promira I2C/SPI Active User Manual v1.33.003

IO

2

2

2

2

2

2

11

transactions. To achieve the fastest throughput, it is advisable to send as many bytes as
possible in a single transaction (i.e., a single call to the Promira API).

3.2.2 Pull-up Resistors

There is a pull up resistor on each I C line (SCL, SDA). The lines are effectively pulled
up to 0.9V-3.45V. For HW version v1.7 and above, I C Standard/Fast/Fast Plus mode,
and I C master mode, the pull up resistor is 2.2K OHM (for 2.2V - 3.45V I C signal level),
470 OHM (for 1.2V - 2.2V I C signal level), or 387 OHM (for 0.9V - 1.2V I C signal level).
For additional information take a look at the "Known I C Limitations" section below. If the
Promira Serial Platform is connected to an I C bus that also includes pull-up resistors,
the total pull-up current could be potentially larger. The I C specification allows for a
maximum of 3 mA pull-up current on each I C line.

A good rule of thumb is that if a downstream I C device can sink more than 5 mA of
current, the protocol should operate properly. Stronger pull-up resistors and larger sink
currents may be required for fast bitrates, especially if there is a large amount of
capacitance on the bus. The Promira Serial Platform is able to sink approximately 10 mA
per pin, so it is possible to have two Promira Serial Platforms communicate with each
other as master and slave, with both devices pull-up resistors enabled.

The Promira platform I C pull up resistors are off by default. Promira platform I C pull up
resistors can be switched and configured through the software GUI and API. Refer to the
API section for more details.

3.2.3 I C Clock Stretching

When the Promira Serial Platform is configured as an I C master, it supports both inter-
bit and inter-byte slave clock-stretching. If a slave device pulls SCL low during a
transaction, the adapter will wait until SCL has been released before continuing with the
transaction.

3.2.4 Known I C Limitations

Promira platform with FW (system/application) v1.10/v1.10 or above works successfully
without the delays described in this paragraph. Promira platform with FW v1.01/v1.00 or
less I C master mode occasionally requires additional time to process the received bytes
and set up the next bytes. In this case the Promira platform inserts delay on the I C bus.
In this case, every I C master read transaction will have a delay before the last byte, and
there may be additional delays between bytes during I C master read and write.

Promira FW v1.31/v1.31 in High Speed I C mode can perform write with no stop that is
followed by read. However, it can't perform either read; or write with stop that is followed
by read.

The Promira Serial Platform can keep the slave functions enabled even while master
operations are executed through the same adapter.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2 2

2 2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

12

Multi-master is also supported: If there is a bus collision during data transmission and
the Promira Serial Platform loses the bus, the transaction will be cut short and the host
API will report that fewer bytes were transmitted than the requested number. This
condition can be distinguished from the case in which the downstream slave cuts short
the transmission by sending a NACK by using the function ps_i2c_read.

This constraint can be phrased in a different manner. Say that I C master device A has a
packet length of X bytes. If there is a second I C master device B, that sends packets of
length greater than X bytes, the first X bytes should never contain exactly the same data
as the data sent by device A. Otherwise the results of the arbitration will be undefined.

This is a constraint found with most I C master devices used in a multi-master
environment.

When I C pull-ups are on, the I C pull-ups values, across HW versions, I C modes, level
shift voltages and I C configurations are described in the table below.

For HW version v1.7 and above, I C Standard/Fast/Fast Plus mode, and I C master
mode, when I C pull-ups are off, there is no pull up resistor. For all other combinations,
when I C pull-ups are off, the I C pull-ups value is 560 OHM.

Table 2 : I C Pull-ups Values

HW Version I C Mode Level Shift
Voltage (V)

I C Configuration I C Pull-ups
Nominal Values

(OHM)

v1.5 and
below

Standard/Fast/Fast
Plus/High Speed

0.9-1.2 Master/Slave 229

v1.5 and
below

Standard/Fast/Fast
Plus/High Speed

1.2-2.2 Master/Slave 255

v1.5 and
below

Standard/Fast/Fast
Plus/High Speed

2.2-3.45 Master/Slave 446

v1.7 and
above

High Speed 0.9-1.2 Master/Slave 229

v1.7 and
above

High Speed 1.2-2.2 Master/Slave 255

v1.7 and
above

High Speed 2.2-3.45 Master/Slave 446

v1.7 and
above

Standard/Fast/Fast
Plus

0.9-1.2 Master 387

v1.7 and
above

Standard/Fast/Fast
Plus

1.2-2.2 Master 470

v1.7 and
above

Standard/Fast/Fast
Plus

2.2-3.45 Master 2.2K

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2 2 2

2

2 2

2

2 2

2

2 2 2

13

v1.7 and
above

Standard/Fast/Fast
Plus

0.9-1.2 Slave 229

v1.7 and
above

Standard/Fast/Fast
Plus

1.2-2.2 Slave 255

v1.7 and
above

Standard/Fast/Fast
Plus

2.2-3.45 Slave 446

3.3 SPI Signaling Characteristics

3.3.1 Speeds

The Promira Platform SPI master can operate at bitrates between 31 kHz and 80 MHz.
The power-on default bitrate is 1 MHz. The maximum bitrates are only achievable within
each individual transaction and does not extend across transactions. The GUI and the
OS may add delay due to internal overhead. The Promira platform has also latency,
which is caused by the Ethernet / USB link between the computer and the Promira
platform. Rarely, there can be also delays across the Ethernet / USB bus even within a
transaction.

The Promira Serial Platform SPI slave can operate at any bitrate from 31 kHz up to
20 MHz.

See also section 2.3.3

3.3.2 Pin Driving

When the SPI interface is activated as a master, the slave select line (SS) is actively
driven low. The MOSI, SCK, IO2, and IO3 lines are driven as appropriate for the SPI
mode. After each transmission is complete, these lines are returned to a high impedance
state. This feature allows the Promira Serial Platform, following a transaction as a master
SPI device, to be then reconnected to another SPI environment as a slave. The Promira
Platform will not fight the master lines in the new environment.

It is advisable that every slave also have passive pull-ups on the MOSI and SCK lines.
These pull-up resistors can be relatively weak – 100k should be adequate.

As a slave, the MOSI, SCK, and SS lines are configured as an input and the MISO line is
configured as an output. This configuration is held as long as the slave mode is enabled
(see the API documentation later in the manual).

3.3.3 Known SPI Limitations

The implementation uses buffer sizes of 2 MB (less one byte) for send and receive
transaction buffers as an SPI master or slave.

Promira I2C/SPI Active User Manual v1.33.003

14

4 Software

4.1 Rosetta Language Bindings: API Integration into
Custom Applications

4.1.1 Overview

The Promira Rosetta language bindings make integration of the Promira API into custom
applications simple. Accessing Promira functionality simply requires function calls to the
Promira API. This API is easy to understand, much like the ANSI C library functions,
(e.g., there is no unnecessary entanglement with the Windows messaging subsystem
like development kits for some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different
Rosetta bindings are included in the software download package available on the Total
Phase website. Currently the following languages are supported: C/C++, C#, VB,
Python. Next, follow the instructions for each language binding on how to integrate the
bindings with your application build setup. As an example, the integration for the C
language bindings is described below. (For information on how to integrate the bindings
for other languages, please see the example code available for download on the Total
Phase website.)

1. Include the promira.h and promact_is.h files in any C or C++ source
module. The module may now use any API call listed in promira.h and
promact_is.h.

2. Compile and link promira.c and promact_is.c with your application. Ensure
that the include path for compilation also lists the directory in which promira.h
and promact_is.h is located if the two files are not placed in the same
directory.

3. Place the Promira DLL (promira.dll), included with the API software package, in
the same directory as the application executable or in another directory such that
it will be found by the previously described search rules.

4.1.2 Aardvark Compatibility

The Aardvark Compatibility Rosetta language bindings make it simple to integrate the
Aardvark API into a custom application using the Promira Serial Platform. Similar to the
Promira language bindings above, follow the instructions for each language binding on

Promira I2C/SPI Active User Manual v1.33.003

15

how to integrate the bindings with your application build setup. As an example, the
integration for the C language bindings is described below.

1. Include the aa_pm.h file included with the API software package in any C or C++
source module. The module may now use any Aardvark API call listed in
aa_pm.h.

2. Compile and link aa_pm.c with your application. Ensure that the include path for
compilation also lists the directory in which aa_pm.h is located if the two files are
not placed in the same directory.

3. Place the Promira DLL (promira.dll) and the Aardvark Compatibility DLL
(aa_pm.dll), included with the API software package, in the same directory as the
application executable or in another directory such that it will be found by the
previously described search rules.

4.1.3 Versioning

Since a new Promira DLL and Aardvark Compatibility DLL can be made available to an
already compiled application, it is essential to ensure the compatibility of the Rosetta
binding used by the application (e.g., aa_pm.c) against the DLL loaded by the system.
A system similar to the one employed for the DLL-Firmware cross-validation is used for
the binding and DLL compatibility check.

Here is an example.

 DLL v1.20: compatible with Binding >= v1.10
 Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return
an error code, PS_APP_INCOMPATIBLE_LIBRARY.

4.1.4 Customizations

While provided language bindings stubs are fully functional, it is possible to modify the
code found within this file according to specific requirements imposed by the application
designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a specific paradigm. See the comments in promira.c or aa_pm.c for more
details.

Promira I2C/SPI Active User Manual v1.33.003

16

5 API Documentation

5.1 Introduction

The Promira API documentation that follows is oriented toward the Promira Rosetta C
bindings. The set of Promira API functions and their functionality is identical regardless
of which Rosetta language binding is utilized. The only differences will be found in the
calling convention of the functions. For further information on such differences please
refer to the documentation that accompanies each language bindings in the Promira API
Software distribution

5.2 General Data Types

The following definitions are provided for convenience. All Promira data types are
unsigned.

 typedef unsigned char u08;
 typedef unsigned short u16;
 typedef unsigned int u32;
 typedef unsigned long long u64;
 typedef signed char s08;
 typedef signed short s16;
 typedef signed int s32;
 typedef signed long long s64;
 typedef float f32;

5.3 Notes on Status Codes

Most of the Promira API functions can return a status or error code back to the caller.
The complete list of status codes is provided at the end of this chapter. All of the error
codes are assigned values less than 0, separating these responses from any numerical
values returned by certain API functions.

Each API function can return one of two error codes with regard to the loading of the
underlying Promira DLL, PS_APP_UNABLE_TO_LOAD_LIBRARY and
PS_APP_INCOMPATIBLE_LIBRARY. If these status codes are received, refer to the
previous sections in this manual that discuss the DLL and API integration of the Promira
software. Furthermore, all API calls can potentially return the error
PS_APP_UNABLE_TO_LOAD_FUNCTION. If this error is encountered, there is likely a
serious version incompatibility that was not caught by the automatic version checking
system. Where appropriate, compare the language binding versions (e.g.,
PM_HEADER_VERSION found in promira.h and PM_CFILE_VERSION found in
promira.c or PS_APP_HEADER_VERSION found in promact_is.h and

Promira I2C/SPI Active User Manual v1.33.003

17

PS_APP_CFILE_VERSION found in promact_is.c) to verify that there are no
mismatches. Next, ensure that the Rosetta language binding (e.g., promira.c and
promira.h or promact_is.c and promact_is.h) are from the same release as the
Promira DLL. If all of these versions are synchronized and there are still problems,
please contact Total Phase support for assistance.

Any API function that accepts any type of handle can return the error
PS_APP_INVALID_HANDLE if the handle does not correspond to a valid instance that
has already been opened or created. If this error is received, check the application code
to ensure that the open or create command returned a valid handle and that this handle
is not corrupted before being passed to the offending API function.

Finally, any function call that communicates with an Promira device can return the error
PS_APP_COMMUNICATION_ERROR. This means that while the handle is valid and the
communication channel is open, there was an error receiving the acknowledgment
response from the Promira application. This can occur in situations where the incoming
data stream has been saturated by asynchronously received messages an outgoing
message is sent to the Promira application, but the incoming acknowledgment is
dropped by the operating system as a result of the incoming USB receive buffer being
full. The error signifies that it was not possible to guarantee that the connected Promira
device has processed the host PC request, though it is likely that the requested action
has been communicated to the Promira device and the response was simply lost. For
example, if the slave functions are enabled and the incoming communication buffer is
saturated, an API call to disable the slave may return
PS_APP_COMMUNICATION_ERROR even though the slave has actually been disabled.

If either the I C or SPI subsystems have been disabled by ps_app_configure, all
other API functions that interact with I C or SPI will return PS_I2C_NOT_ENABLED or
PS_SPI_NOT_ENABLED, respectively.

These common status responses are not reiterated for each function. Only the error
codes that are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed
following the API documentation.

5.4 Application Management Interface

All functions starting with pm_ are for Application Management. Please refer to the
Promira Serial general user manual for the details.

Promira I2C/SPI Active User Manual v1.33.003

2

2

18

5.5 General Application Interface

5.5.1 General Application

Overview

After opening the device with pm_open and starting an application with pm_load, a
connection needs to be established with ps_app_connect. See the language specific
sample programs for examples of this connection process.

Connect to the Application (ps_app_connect)

 PromiraConnectionHandle ps_app_connect (const char * net_addr)

Connect to the application launched by pm_load.

Arguments

net_addr The net address of the Promira Serial Platform. It could be
an IPv4 address or a host name.

Return Value

This function returns a connection handle, which is guaranteed to be greater than
zero if valid.

Specific Error Codes

PS_APP_UNABLE_TO_OPEN Unable to connect to the
application.

PS_APP_UNABLE_TO_INIT_SUBSYSTEM Failed to initialize one of
subsystems (I C, SPI, or
GPIO) in the Promira
application.

Details

More than one connection can be made to the application.

Disconnect to the Application (ps_app_disconnect)

 int ps_app_disconnect (PromiraConnectionHandle conn)

Disconnect to the application.

Promira I2C/SPI Active User Manual v1.33.003

2

19

Arguments

conn handle of the connection to the application

Return Value

The number of the connections to applications disconnected is returned on success.
This will usually be 1.

Specific Error Codes

None.

Details

If the conn argument is zero, the function will attempt to disconnect all possible
handles, thereby disconnecting all connected handles. The total number of handle
disconnected is returned by the function.

Version (ps_app_version)

 int ps_app_version (PromiraChannelHandle channel,
 PromiraAppVersion * version);

Return the version matrix for the application connected to the given handle.

Arguments

channel handle of the channel

version pointer to pre-allocated structure

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

The PromiraAppVersion structure describes the various version dependencies of
application components. It can be used to determine which component caused an
incompatibility error.

 struct PromiraAppVersion {

Promira I2C/SPI Active User Manual v1.33.003

20

 /* Software, firmware, and hardware versions. */
 u16 software;
 u16 firmware;
 u16 hardware;

 /* FW requires that SW must be >= this version. */
 u16 sw_req_by_fw;

 /* SW requires that FW must be >= this version. */
 u16 fw_req_by_sw;

 /* API requires that SW must be >= this version. */
 u16 api_req_by_sw;
 };

If the handle is 0 or invalid, only software, fw_req_by_sw, and api_req_by_sw
version are set.

Sleep (ps_app_sleep_ms)

 int ps_app_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments

milliseconds number of milliseconds to sleep

Return Value

This function returns the number of milliseconds slept.

Specific Error Codes

None.

Details

This function provides a convenient cross-platform function to sleep the current
thread using standard operating system functions.

Promira I2C/SPI Active User Manual v1.33.003

21

The accuracy of this function depends on the operating system scheduler. This
function will return the number of milliseconds that were actually slept.

Status String (ps_app_status_string)

 const char *ps_app_status_string (int status);

Return the status string for the given status code.

Arguments

status status code returned by a Promira application function.

Return Value

This function returns a human readable string that corresponds to status. If the code
is not valid, it returns a NULL string.

Specific Error Codes

None.

Details

None.

5.5.2 Channel

Channel Overview

Creating a channel opens a logical pipe to send and receive data with the device.

Open a Channel (ps_channel_open)

 PromiraChannelHandle ps_channel_open (PromiraConnectionHandle conn);

Open a logical communication channel.

Arguments

conn handle of the connection to the application

Return Value

Promira I2C/SPI Active User Manual v1.33.003

22

This function returns a channel handle, which is guaranteed to be greater than zero
if valid.

Specific Error Codes

None.

Details

The channel is a logical communication layer that talks to the application. All
commands to the application will be executed through a channel.

Close the Channel (ps_channel_close)

 int ps_channel_close (PromiraChannelHandle channel);

Close the logical communication channel with the specified handle.

Arguments

channel handle of the channel

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

None.

Get the Number of Queues Submitted (ps_channel_submitted_count)

 int ps_channel_submitted_count (PromiraChannelHandle channel);

Return the number of queues submitted, but not collected through the channel.

Arguments

channel handle of the channel

Return Value

The number of queues submitted.

Promira I2C/SPI Active User Manual v1.33.003

23

Specific Error Codes

None.

Details

None.

Get the Number of Queues Uncollected (ps_channel_uncollected_count)

 int ps_channel_uncollected_count (PromiraChannelHandle channel);

Return the number of queues completed and uncollected through the channel.

Arguments

channel handle of the channel

Return Value

None.

Specific Error Codes

None.

Details

None.

5.5.3 Queue

Queue Overview

In order to use the Promira Serial Platform to send data across the bus at high speed,
data and commands can be accumulated in a queue until the queue is submitted to shift
all of the queued data and commands.

A single queue must contain commands of the same type (i.e. I C, SPI, or GPIO) and
the commands will be executed in order for that subsystem. However, commands across
queues with different types will be executed in parallel. For example, if two I C queues
are submitted followed by one SPI queue, all the I C commands will be executed in
order and the SPI commands will be executed at the same time as the I C commands.

To synchronize data across queues of different types, use ps_queue_sync to queue a
sync command. When the device receives a sync command, it waits for all previously
received commands to execute and then continues. Therefore, in the example above, if

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

24

a sync command was submitted between the two I C queues and the SPI queue, all the
I C commands will complete before the SPI commands begin.

Each queue can have a maximum of 255 commands.

I C Transfer Example with Promira API Queue Mechanism:

1. Call ps_queue_create to create a queue, and specify the queue type (e.g.
PS_MODULE_ID_I2C_ACTIVE).

2. Call ps_queue_clear to clear the queue.

3. Call ps_queue_i2c_write to add an I C write command to the queue.

4. Call ps_queue_i2c_read to add an I C read command to the queue.

5. Call ps_queue_submit to send out the accumulated commands on the I C bus.

6. Call ps_collect_resp to collect the next response.

a. The return value of ps_collect_resp will be PS_I2C_CMD_WRITE.

b. Call ps_collect_i2c_write to collect the response of the I C write.

7. Call ps_collect_resp to collect the next response.

a. The return value of ps_collect_resp will be PS_I2C_CMD_READ.

b. Call ps_collect_i2c_read to collect the response of the I C read.

8. Repeat step 7 until ps_collect_resp returns
PS_APP_NO_MORE_CMDS_TO_COLLECT.

9. Call ps_queue_destroy to destroy the queue or go back to step 6 to submit the
queue again.

SPI Transfer Example with Promira API Queue Mechanism:

1. Call ps_queue_create to create a queue, and specify the queue type (e.g.
PS_MODULE_ID_SPI_ACTIVE).

2. Call ps_queue_clear to clear the queue.

3. Call ps_queue_spi_oe to add a command to the queue to enable SPI outputs.

4. Call ps_queue_spi_ss to add a command to the queue to assert SS line.

5. Call ps_queue_spi_write or ps_queue_spi_write_word or
ps_queue_spi_read to add an SPI command that's shifts data on the bus.

6. Call ps_queue_spi_ss to add a command to the queue to deassert SS line.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

2

25

7. Call ps_queue_spi_oe to add a command to the queue to disable master
output.

8. Call ps_queue_submit to send the accumulated commands on the SPI bus.

9. Call ps_collect_resp to collect the first/next response from the previously
submitted queue.

a. If the return value is PS_SPI_CMD_READ, call ps_collect_spi_read to
collect the response of with the SPI data.

b. Other wise, no additional functions need to be called.

10. Repeat step 9 until you receive from the function ps_collect_resp the return
value PS_APP_NO_MORE_CMDS_TO_COLLECT.

11. Call ps_queue_destroy to destroy the queue or go back to step 6 to submit the
queue again.

Create a Queue (ps_queue_create)

 PromiraQueueHandle ps_queue_create (
 PromiraConnectionHandle conn,
 u08 queue_type);

Create a queue.

Arguments

conn handle of the connection to the application

queue_type type of queue. See Table 3

Table 3 : queue_type enumerated types

PS_MODULE_ID_I2C_ACTIVE An I C queue.

PS_MODULE_ID_SPI_ACTIVE A SPI queue.

PS_MODULE_ID_GPIO A GPIO queue.

Return Value

This function returns a queue handle, which is guaranteed to be greater than zero if
valid.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

2

26

The queue can contain only data and commands of type queue_type (i.e. an I C
queue can only contain I C commands).

Destroy the Queue (ps_queue_destroy)

 int ps_queue_destroy (PromiraQueueHandle queue);

Destroy the queue.

Arguments

queue handle of the queue

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

None.

Clear the Queue (ps_queue_clear)

 int ps_queue_clear (PromiraQueueHandle queue);

Clear the queue.

Arguments

queue handle of the queue

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

All queued data and commands are removed from the queue.

Promira I2C/SPI Active User Manual v1.33.003

2

2

27

Queue a Delay in Milliseconds (ps_queue_delay_ms)

 int ps_queue_delay_ms (PromiraQueueHandle queue,
 int milliseconds);

Queue a delay on the bus in units of milliseconds.

Arguments

queue handle of the queue

milliseconds amount of time for delay in milliseconds

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Queue milliseconds amount of delay on the bus.

Queue a Sync Command (ps_queue_sync)

 int ps_queue_sync (PromiraQueueHandle queue);

Queue a sync command that waits for all previous commands to be executed.

Arguments

queue handle of the queue

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

28

None.

Get a number of commands (ps_queue_size)

 int ps_queue_size (PromiraQueueHandle queue);

Get a number of commands in a queue.

Arguments

queue handle of the queue

Return Value

The number of command is the queue will be returned.

Specific Error Codes

None.

Details

None.

Submit the Queue (ps_queue_submit)

 PromiraCollectHandle ps_queue_submit (
 PromiraQueueHandle queue,
 PromiraChannelHandle channel,
 u08 ctrlId,
 u08 * queue_type);

Perform the current batch queue.

Arguments

queue handle of the queue

channel handle of the channel

ctrlId index of the subsystem. This argument is for future
use. Set 0 for this argument.

queue_type type of queue

Return Value

This function returns a collect handle, which is guaranteed to be greater than zero if
valid.

Promira I2C/SPI Active User Manual v1.33.003

29

Specific Error Codes

None.

Details

This function performs all of the accumulated commands in the queue and shifts
them in-order to the subsystem (I C, SPI or GPIO). After the operation completes,
the queue is not cleared. Therefore, this function may be called repeatedly if the
same sequence of commands is to be shifted across the bus multiple times.

When there are any queues uncollected, this function will return
PS_APP_PENDING_ASYNC_CMD.

The queue_type tells what type of queue commands are executed.

This function blocks and will return when the host receives the response for the first
command in the queue. The ps_collect_resp function can then be used to
retrieve this initial response and the remaining responses.

If ps_queue_submit is called again before the previous responses are collected,
all uncollected responses of the previous queue will be discarded.

Submit an Asynchronous Shift (ps_queue_async_submit)

 int ps_queue_async_submit (PromiraQueueHandle queue,
 PromiraChannelHandle channel,
 u08 ctrlId);

Submit the shift operations in the queue for asynchronous execution.

Arguments

queue handle of the queue

channel handle of the channel

ctrlId index of the subsystem. This argument is for future use. Set
0 for this argument.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

2

30

This function will submit the current batch queue asynchronously. A temporary
outgoing buffer will be created to store the batch queue. An internal incoming buffer
will also be created to asynchronously capture the slave response data. The
application programmer does not have to explicitly manage these two buffers. The
function will immediately return after queuing this batch onto the Ethernet or the
Ethernet over USB rather than waiting for the shift to complete.

At this point, the user application can submit another queue. This can be done
immediately by submitting the same queue a second time without altering it the
application simply needs to call ps_queue_async_submit again. Or, the user
application may clear the queue, create a different queue all together or append
more commands to the existing queue. Any subsequent calls to
ps_queue_async_submit will again create a temporary outgoing buffer and copy
the current batch into it. Likewise, a temporary incoming buffer will also be created.

Note that the submitted queue should be sufficiently long (in real time) so that it
does not complete before the user application can submit more queues (and also
collect the first queue). This will allow the adjacent batches to shift with very little
delay between them. How long to be safe? First, there is always the possibility that
the user applications process could be scheduled out by the operating system
before it has an opportunity to submit the subsequent batch. The operating system
scheduler time slice may be as much as 10ms. Therefore, submitted batches should
be long enough to bridge one, if not two, time slices. Second, if the user application
is performing its own functions between the submission of two batches, the length of
the batches should be long enough to accommodate the CPU time of those
functions.

Keep in mind the overhead for each queue:

1. In the worst case there is an additional 4KB of internal data required for each
queue.

2. The incoming data is stored internally before being collected. This incoming
data may have up to an additional 4KB of internal data.

Additionally, only a fixed number of submissions can be made and left pending prior
to collection. This number is fixed to 127.

Promira I2C/SPI Active User Manual v1.33.003

31

Finally, the asynchronous interface is only useful if the outgoing data of any
asynchronous submission does not rely on the return data of a previous
asynchronous submission.

Collect an Asynchronous Submission (ps_queue_async_collect)

 PromiraCollectHandle ps_queue_async_collect (
 PromiraChannelHandle channel,
 u08 * queue_type);

Collect a previously submitted asynchronous queue.

Arguments

channel handle of channel

queue_type type of queue

Return Value

This function returns a collect handle, which is guaranteed to be greater than zero if
valid.

Specific Error Codes

None.

Details

This function can be called at anytime after submitting a queue for asynchronous
processing. It will block until the first command in the pending queue completes.

If ps_channel_close is called without collecting pending asynchronous batches,
those batches will be canceled, even if they are in progress. All temporary buffers
will be freed as well.

5.5.4 Collect

Collect the Response of the Command (ps_collect_resp)

 int ps_collect_resp (PromiraCollectHandle collect,
 int * length,
 int * result,
 int timeout);

Collect the response of one command from a previously submitted asynchronous queue
with the associated collect handle.

Promira I2C/SPI Active User Manual v1.33.003

32

Arguments

collect handle of the collection

length The actual number of bytes received

result The status code returned when it is executed separately

timeout time to wait for the response

Return Value

This function returns the identifier of the response read. See Table 4

Table 4 : Identifier of the response

PS_I2C_CMD_WRITE Response for ps_queue_i2c_write.
length will be 0 and result will be I C status code (see
Table 8). In order to get the number of bytes written, use
function ps_collect_i2c_write.

PS_I2C_CMD_READ Response for ps_queue_i2c_read.
length will be the buffer size in bytes required to get the
received data and result will be I C status code (see Table 8).
Use ps_collect_i2c_read to get the data.

PS_I2C_CMD_DELAY_MS Response for ps_queue_delay_ms.
length and result will be the actual delays in milliseconds.

PS_SPI_CMD_OE Response for ps_queue_spi_oe.
length will be 0 and result will be the actual result of
enabling the outputs.

PS_SPI_CMD_SS Response for ps_queue_spi_ss.
length will be 0 and result will be the bitmask of slave select
states.

PS_SPI_CMD_DELAY_CYCLES Response for ps_queue_spi_delay_cycles.
length and result will be the actual delays in clock cycle.

PS_SPI_CMD_DELAY_MS Response for ps_queue_delay_ms.
length and result will be the actual delays in milliseconds.

PS_SPI_CMD_DELAY_NS Response for ps_queue_spi_delay_ns.
length and result will be the actual delays in nanoseconds.

PS_SPI_CMD_READ Response for ps_queue_spi_write,
ps_queue_spi_write_word, and ps_queue_spi_read.
length will be the buffer size in bytes required to get the
received data and result will be the actual number of words.
Use ps_collect_spi_read to get the data.

PS_GPIO_CMD_DIRECTION Response for ps_queue_gpio_direction.
length and result will be 0.

Promira I2C/SPI Active User Manual v1.33.003

2

2

33

PS_GPIO_CMD_GET Response for ps_queue_gpio_get.
length will be 0 and result will be the actual state of the
GPIO input lines.

PS_GPIO_CMD_SET Response for ps_queue_gpio_set.
length and result will be 0.

PS_GPIO_CMD_CHANGE Response for ps_queue_gpio_change.
length will be 0 and result will be the actual state of the
GPIO input lines.

PS_GPIO_CMD_DELAY_MS Response for ps_queue_delay_ms.
length and result will be the actual delays in milliseconds.

Specific Error Codes

PS_APP_NO_MORE_CMDS_TO_COLLECT Already collect all the
responses for the
command in the batch

Details

It is also possible to ignore to receive the information come with either length or
result by passing NULL.

For some commands (I C write/read or SPI write), additional function call is required
to get data and the information.

Once ps_collect_resp gets called, the previous response is no longer available.

5.5.5 Configuration

Configure (ps_app_configure)

 int ps_app_configure (PromiraChannelHandle channel,
 int config);

Activate/deactivate individual subsystems (I C, SPI, GPIO).

Arguments

channel handle of the channel

config enumerated type specifying configuration. See Table 5

Table 5 : config enumerated types

Promira I2C/SPI Active User Manual v1.33.003

2

2

34

PS_APP_CONFIG_GPIO Configure pins as GPIO. Disable both I C
and SPI.

PS_APP_CONFIG_SPI Enable SPI. Configure I C pins as GPIO.

PS_APP_CONFIG_I2C Enable I C. Configure SPI SS pins as
GPIO.

PS_APP_CONFIG_SPI|PS_APP_CONFIG_I2C Enable both I C and SPI.

PS_APP_CONFIG_QUERY Queries existing configuration (does not
modify).

Return Value

The current configuration will be returned. The configuration will be described by the
same values in config.

Specific Error Codes

None.

Details

If either the I C or SPI subsystems have been disabled by this API call, all other API
functions that interact with I C or SPI will return PS_APP_CONFIG_ERROR.

If configurations are switched, the subsystem specific parameters will be preserved.
For example if the SPI bitrate is set to 500 kHz and the SPI system is disabled and
then enabled, the bitrate will remain at 500 kHz. This also holds for other
parameters such as the SPI mode, SPI slave response, I C bitrate, I C slave
response, etc.

However, if a subsystem is shut off, it will be restarted in a quiescent mode. That is
to say, the I C slave function will not be reactivated after re-enabling the I C
subsystem, even if the I C slave function was active before first disabling the I C
subsystem.

Target Power (ps_phy_target_power)

 int ps_phy_target_power (PromiraChannelHandle channel,
 u08 power_mask);

Activate/deactivate target power pins 4, 6 and/or 22, 24.

Arguments

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2 2

2 2

2 2

35

channel handle of the channel

power_mask enumerated values specifying power pin state. See Table 6.

Table 6 : power_mask enumerated types

PS_PHY_TARGET_POWER_NONE Disable target power pins 4, 6, 22, 24. Pins 4, 6, 22, 24
at GND level.

PS_PHY_TARGET_POWER_TGT1_5V Enable 5V on target power pins 4 and 6.

PS_PHY_TARGET_POWER_TGT1_3V Enable 3.3V on target power pins 4 and 6.

PS_PHY_TARGET_POWER_TGT2 Enable target power pins 22 and 24 with the same
voltage as the I C/SPI signals voltage level as
programed by API function ps_phy_level_shift.
The I C/SPI logic level can be programed to 0.9V to
3.45V. The precision level of the level shifter is
approximately 0.015V.

PS_PHY_TARGET_POWER_BOTH Enable 5V on target power pins 4 and 6, and enable
target power pins 22 and 24 with the same voltage as
the I C/SPI signals voltage level as programed by API
function ps_phy_level_shift.

PS_PHY_TARGET_POWER_QUERY Queries the target power pin state.

Return Value

The current state of the target power pins will be returned. The configuration will be
described by the same values as in the table above.

Specific Error Codes

None.

Details

None.

Level Shift (ps_phy_level_shift)

 f32 ps_phy_level_shift (PromiraChannelHandle channel,
 f32 level);

Shift the logic level for all signal pins including target power pin 22 and 24.

Arguments

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

36

channel handle of the channel

level logic level from 0.9V to 3.45V

Return Value

The Actual logic level on the Promira host adapter will be returned.

Specific Error Codes

None.

Details

The call with PS_PHY_LEVEL_SHIFT_QUERY returns existing configuration and
does not modify.

5.6 I C Interface

5.6.1 I C Notes

1. It is not necessary to set the bitrate for the Promira I C slave.

2. An I C master operation read or write operation can be transacted while leaving
the I C slave functionality enabled. In a multi-master situation it is possible for the
I C subsystem to lose the bus during the slave addressing portion of the
transaction. If the other master that wins the bus subsequently addresses this I C
subsystem slave address, the I C subsystem will respond appropriately to the
request using its slave mode capabilities.

3. It is always advisable to set the slave response before first enabling the slave.
This ensures that valid data is sent to any requesting master.

4. It is not possible to receive messages larger than approximately 64 KiB-1 as a
slave due to operating system limitations on the asynchronous incoming buffer.
As such, one should not queue up more than 64 KiB-1 of total slave data between
calls to the Promira API.

5. It is possible for the Promira I C master to employ some of the advanced features
of I C. This is accomplished by the PromiraI2CFlags argument type that is
included in the ps_i2c_read and ps_i2c_write argument lists. The options in
Table 7 are available can be logically ORed together to combine them for one
operation.

Table 7 : I C Advanced Feature Options

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

2

2

2

2

37

PS_I2C_NO_FLAGS Request no options.

PS_I2C_10_BIT_ADDR Request that the provided address is
treated as a 10-bit address. The Promira I
C subsystem will follow the Philips I C
specification when transmitting the address.

PS_I2C_COMBINED_FMT Request that the Philips combined format is
followed during a I C read operation.
Please see the Philips specification for
more details. This flag does not have any
effect unless a master read operation is
requested and the PS_I2C_10_BIT_ADDR
is also set.

PS_I2C_NO_STOP Request that no stop condition is issued on
the I C bus after the transaction completes.
It is expected that the PC will follow up with
a subsequent transaction at which point a
repeated start will be issued on the bus.
Eventually an I C transaction must be
issued without the "no stop" option so that a
stop condition is issued and the bus is
freed.

PS_I2C_SIZED_READ See ps_i2c_read below.

PS_I2C_SIZED_READ_EXTRA1 See ps_i2c_read below.

6. It is possible for the Promira I C master to return an extended status code for
master read and master write transactions. These codes are described in Table 8
and are returned by the ps_i2c_read and ps_i2c_write functions, as well as
the analogous slave API functions.

Table 8 : I C Extended Status Code

PS_I2C_STATUS_BUS_ERROR 1 A bus error has occurred.
Transaction was aborted.

PS_I2C_STATUS_SLAVE_ACK 2 Bus arbitration was lost during
master transaction; another master
on the bus has successfully
addressed this Promira Serial
Platforms slave address. As a result,
this Promira adapter has
automatically switched to slave mode
and is responding.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

38

PS_I2C_STATUS_SLAVE_NACK 3 The Promira application failed to
receive acknowledgment for the
requested slave address during a
master operation.

PS_I2C_STATUS_DATA_NACK 4 The last data byte in the transaction
was not acknowledged by the slave.

PS_I2C_STATUS_ARB_LOST 5 Another master device on the bus
was accessing the bus
simultaneously with this Promira
Serial Platform. That device won
arbitration of the bus as per the I C
specification.

PS_I2C_STATUS_BUS_LOCKED 6 An I C packet is in progress, and the
time since the last I C event
executed or received on the bus has
exceeded the bus lock timeout. This
is most likely due to the clock line of
the bus being held low by some other
device, or due to the data line held
low such that a start condition cannot
be executed by the Promira
application. The bus lock timeout can
be configured using the
ps_i2c_bus_timeout function.
The Promira application resets its
own I C interface when a timeout is
observed and no further action is
taken on the bus.

PS_I2C_STATUS_LAST_DATA_ACK 7 When the I C slave is configured with
a fixed length transmit buffer, it will
detach itself from the I C bus after
the buffer is fully transmitted. The I C
slave also expects that the last byte
sent from this buffer is NACKed by
the opposing master device. This
status code is returned by the I C
slave (see Slave Write Statistics API)
if the master device instead ACKs
the last byte. The notification can be
useful when debugging a third-party
master device.

These codes can provide hints as to why an impartial transaction was
executed by the Promira Serial Platform. In the event that a bus error
occurs while the Promira Serial Platform is idle and enabled as a slave

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

2

39

(but not currently receiving a message), the adapter will return the bus
error through the ps_i2c_slave_read function. The length of the
message will be 0 bytes but the status code will reflect the bus error.

5.6.2 General I C

I C Pullups (ps_i2c_pullup)

 int ps_i2c_pullup (PromiraChannelHandle channel,
 u08 pullup_mask);

Activate/deactivate I C pull-up resistors on SCL and SDAFree the I C subsystem from a
held.

Arguments

channel handle of the channel

pullup_mask enumerated values specifying pullup state. See Table 9.
Table 9 : pullup_mask enumerated types

PS_I2C_PULLUP_NONE Disable SCL/SDA pull-up resistors

PS_I2C_PULLUP_BOTH Enable SCL/SDA pull-up resistors

PS_I2C_PULLUP_QUERY Queries the pull-up resistor state

Return Value

The current state of the I C pull-up resistors on the Promira platform will be
returned. The configuration will be described by the same values as in the table
above.

Specific Error Codes

None.

Details

Both pull-up resistors are controlled together. Independent control is not supported.
This function may be performed in any operation mode.

These pull-up resisters vary on the voltage level of SCL/SDA line which can be set
by ps_phy_level_shift. For HW version v1.7 and above, I C Standard/Fast/
Fast Plus mode, and I C master mode, see Table 10. For additional information take
a look at the "Known I C Limitations" section above.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2 2

2

2

2

2

40

Table 10 : I C pull-up resistor

Level Shift Voltage (V) I C Pull-ups Nominal Values (OHM)

0.9-1.2 387

1.2-2.2 470

2.2-3.45 2.2K

Free bus (ps_i2c_free_bus)

 int ps_i2c_free_bus (PromiraChannelHandle channel);

Free the I C subsystem from a held bus condition (e.g., "no stop").

Arguments

channel handle of the channel

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

PS_I2C_BUS_ALREADY_FREE The bus was already free and
no action was taken.

Details

If the I C subsystem had executed a master transaction and is holding the bus due
to a previous PS_I2C_NO_STOP flag, this function will issue the stop command and
free the bus. If the bus is already free, it will return the status code
PS_I2C_BUS_ALREADY_FREE.

Similarly, if the I C subsystem was placed into slave mode and in the middle of a
slave transaction, this command will disconnect the slave from the bus, flush the last
transfer, and re-enable the slave. Such a feature is useful if the Promira application
was receiving bytes but then was forced to wait indefinitely on the bus because of
the absence of the terminating stop command. After disabling the slave, any
pending slave reception will be available to the host through the usual
ps_i2c_slave_write_stats and ps_i2c_slave_read API calls.

The bus is always freed (i.e., a stop command is executed if necessary) and the
slave functions are disabled at software opening and closing of the device.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

41

Set Bus Lock Timeout (ps_i2c_bus_timeout)

 int ps_i2c_bus_timeout (PromiraChannelHandle channel,
 u16 timeout_ms);

Set the I C bus lock timeout in milliseconds.

Arguments

channel handle of the channel

timeout_ms the requested bus lock timeout in ms.

Return Value

This function returns the actual timeout set.

Specific Error Codes

None.

Details

The power-on default timeout is 200ms. The minimum timeout value is 10ms and
the maximum is 450ms. If a timeout value outside this range is passed to the API
function, the timeout will be restricted. The exact timeout that is set can vary based
on the resolution of the timer within the Promira application. The nominal timeout
that was set is returned back by the API function.

If timeout_ms is 0, the function will return the bus lock timeout presently set on the
Promira application and the bus lock timeout will be left unmodified.

If the bus is locked during the middle of any I C transaction (master transmit, master
receive, slave transmit, slave receive) the appropriate extended API function will
return the status code PS_I2C_STATUS_BUS_LOCKED as described in the
preceding Notes section. The bus lock timeout is measured between events on the I
C bus, where an event is a start condition, the completion of 9bits of data transfer,

a repeated start condition, or a stop condition. For example, if a full 9 bits are not
completed within the bus lock timeout (due to clock stretching or some other error),
the bus lock error will be triggered.

Please note that once the Promira application detects a bus lock timeout, it will abort
its I C interface, even if the timeout condition is seen in the middle of a byte. When

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

42

the Promira application is acting as an I C mater device, this may result in only a
partial byte being executed on the bus.

5.6.3 I C Master

Set Bitrate (ps_i2c_bitrate)

 int ps_i2c_bitrate (PromiraChannelHandle channel,
 int bitrate_khz);

Set the I C bitrate in kilohertz.

Arguments

channel handle of the channel

bitrate_khz the requested bitrate in khz.

Return Value

This function returns the actual bitrate set.

Specific Error Codes

None.

Details

The power-on default bitrate is 100 kHz.

Only certain discrete bitrates are supported by the I C master interface. As such,
this actual bitrate set will be less than or equal to the requested bitrate.

If bitrate_khz is 0, the function will return the bitrate presently set on the I C
subsystem and the bitrate will be left unmodified.

Master Read (ps_i2c_read)

 int ps_i2c_read (PromiraChannelHandle handle,
 u16 slave_addr,
 PromiraI2CFlags flags,
 u16 num_bytes,
 u08 * data_in
 u16 * num_read);

Read a stream of bytes from the I C slave device.

Arguments

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

43

channel handle of the channel

slave_addr the slave from which to read

flags special operations as described in "Notes" section and below

num_bytes the number of bytes to read (maximum 65535)

data_in array into which the data read are returned

num_read the actual number of bytes read

Return Value

Status code (see "Notes" section).

Specific Error Codes

PS_I2C_READ_ERROR There was an error reading from the Promira
application. This is most likely a result of a
communication error.

Details

For ordinary 7-bit addressing, the lower 7 bits of slave_addr should correspond to
the slave address. The topmost bits are ignored. The I C subsystem will assemble
the address along with the R/W bit after grabbing the bus. For 10-bit addressing, the
lower 10 bits of addr should correspond to the slave address. The I C subsystem
will then assemble the address into the proper format as described in the Philips
specification, namely by first issuing an write transaction on the bus to specify the
10-bit slave and then a read transaction to read the requested number of bytes. The
initial write transaction can be skipped if the "Combined Format" feature is
requested in conjunction with the 10-bit addressing functionality.

The data_in pointer should be allocated at least as large as num_bytes. When
the data_in is NULL, this function discards the actual received bytes and returns
only num_read. When the num_read is NULL, this function fills the actual received
bytes, but doesn't return the number of bytes received.

It is possible to read zero bytes from the slave. In this case, num_bytes is set to 0
and the data_in argument is ignored (i.e., it can be 0 or point to invalid memory).
However, due to the nature of the I C protocol, it is not possible to address the slave
and not request at least one byte. Therefore, one byte is actually received by the
host, but is subsequently thrown away.

If the number of bytes read is zero, the following conditions are possible.

• The requested slave was not found.

• The requested slave is on the bus but refuses to acknowledge its address.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

44

• The I C subsystem was unable to seize the bus due to the presence of another
I C master. Here, the arbitration was lost during the slave addressing
phase – results can be unpredictable.

• Zero bytes were requested from a slave. The slave acknowledged its address
and returned 1 byte. That byte was dropped.

Ordinarily the number of bytes read, if not 0, will equal the requested number of
bytes. One special scenario in which this will not happen is if the I C subsystem
loses the bus during the data transmission due to the presence of another I C
master.

If the slave has fewer bytes to transmit than the number requested by the master,
the slave will simply stop transmitting and the master will receive 0xff for each
remaining byte in the transmission. This behavior is in accordance with the I C
protocol.

Additionally, the flags argument can be used to specify a sized read operation. If
the flag includes the value PS_I2C_SIZED_READ, the I C subsystem will treat the
first byte received from the slave as a packet length field. This length denotes the
number of bytes that the slave has available for reading (not including the length
byte itself). The I C subsystem will continue to read the minimum of num_bytes-1
and the length field. The length value must be greater than 0. If it is equal to 0, it will
be treated as though it is 1. In order to support protocols that include an optional
checksum byte (e.g., SMBus) the flag can alternatively be set to
PS_I2C_SIZED_READ_EXTRA1. In this case the I C subsystem will read one more
data byte beyond the number specified by the length field.

The status code allows the user to discover specific events on the I C bus that
would otherwise be transparent given only the number of bytes transacted. The
"Notes" section describes the status codes.

For a master read operation, the PS_I2C_STATUS_DATA_NACK flag is not used
since the acknowledgment of data bytes is predetermined by the master and the I C
specification.

Queue a Master Read (ps_queue_i2c_read)

 int ps_queue_i2c_read (PromiraQueueHandle queue,
 u16 slave_addr,
 PromiraI2CFlags flags,
 u16 num_bytes);

Queue a command that reads a stream of bytes from the I C slave device.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

2

2

2

2

45

Arguments

queue handle of the queue

slave_addr the slave from which to read

flags special operations as described in "Notes" section and below

num_bytes the number of bytes to read (maximum 65535)

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The actual data read and the number of bytes read will be returned with the function
ps_collect_resp and ps_collect_i2c_read when collecting.

Collect a Master Read (ps_collect_i2c_read)

 int ps_collect_i2c_read (PromiraCollectHandle collect,
 u16 num_bytes,
 u08 * data_in
 u16 * num_read);

Collect the response of I C master read.

Arguments

collect handle of the collection

num_bytes maximum size of the array

data_in array into which the data read are returned

num_read the actual number of bytes read

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

PS_APP_MISMATCHED_CMD The type of response is not PS_I2C_CMD_READ.

Promira I2C/SPI Active User Manual v1.33.003

2

46

Details

This function should be called right after the function ps_collect_resp returns
PS_I2C_CMD_READ. Once the function ps_collect_resp is called again, then
data for I C read command will be discarded. However this function can be called
many times before the function ps_collect_resp is called.

Master Write (ps_i2c_write)

 int ps_i2c_write (PromiraChannelHandle channel,
 u16 slave_addr,
 PromiraI2CFlags flags,
 u16 num_bytes,
 const u08 * data_out,
 u16 * num_written);

Write a stream of bytes to the I C slave device.

Arguments

channel handle of the channel

slave_addr the slave from which to write

flags special operations as described in "Notes" section

num_bytes the number of bytes to write (maximum 65535)

data_out pointer to data

num_written the actual number of bytes written

Return Value

Status code (see "Notes" section).

Specific Error Codes

PS_I2C_WRITE_ERROR There was an error reading the
acknowledgment from the Promira application.
This is most likely a result of a communication
error.

Details

For ordinary 7-bit addressing, the lower 7 bits of slave_addr should correspond to
the slave address. The topmost bits are ignored. The I C subsystem will assemble
the address along with the R/W bit after grabbing the bus. For 10-bit addressing, the
lower 10 bits of addr should correspond to the slave address. The I C subsystem
will then assemble the address into the proper format as described in the Philips

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

47

specification. There is a limitation that a maximum of only 65534 bytes can be
written in a single transaction if the 10-bit addressing mode is used.

The slave_addr 0x00 has been reserved in the I C protocol specification for
general call addressing. I C slaves that are enabled to respond to a general call will
acknowledge this address. The general call is not treated specially in the I C
master. The user of this API can manually assemble the first data byte if the
hardware address programming feature with general call is required.

It is actually possible to write 0 bytes to the slave. The slave will be addressed and
then the stop condition will be immediately transmitted by the I C subsystem. No
bytes are sent to the slave, so the data_out argument is ignored (i.e., it can be 0
or point to invalid memory).

If the number of bytes written is zero, the following conditions are possible.

• The requested slave was not found.

• The requested slave is on the bus but refuses to acknowledge its address.

• The I C subsystem was unable to seize the bus due to the presence of another
I C master. Here, the arbitration was lost during the slave addressing
phase results can be unpredictable.

• The slave was addressed and no bytes were written to it because num_bytes
was set to 0.

The number of bytes written can be less than the requested number of bytes in the
transaction due to the following possibilities.

• The I C subsystem loses the bus during the data transmission due to the
presence of another I C master.

• The slave refuses the reception of any more bytes.

The status code allows the user to discover specific events on the I C bus that
would otherwise be transparent given only the number of bytes transacted. The
"Notes" section describes the status codes.

For a master write operation, the PS_I2C_STATUS_DATA_NACK flag can be useful
in the following situation:

• Normally the I C master will write to the slave until the slave issues a NACK or
the requested number of bytes have been written.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

2

2

2

2

48

• If the master has wishes to write 10 bytes, the I C slave issues either an ACK
or NACK on the tenth byte without affecting the total number of bytes
transferred. The status code will distinguish the two scenarios. This status
information could be useful for further communications with that particular slave
device.

Queue a Master Write (ps_queue_i2c_write)

 int ps_queue_i2c_write (PromiraQueueHandle queue,
 u16 slave_addr,
 PromiraI2CFlags flags,
 u16 num_bytes,
 const u08 * data_out);

Queue a command that writes a stream of bytes to the I C slave device.

Arguments

queue handle of the queue

slave_addr the slave from which to write

flags special operations as described in "Notes" section

num_bytes the number of bytes to write (maximum 65535)

data_out pointer to data

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The actual data written will be returned with the function ps_collect_resp and
ps_collect_i2c_write when collecting.

Collect a Master Write (ps_collect_i2c_write)

 int ps_collect_i2c_read (PromiraCollectHandle collect,
 u16 * num_written);

Collect the response of I C master write.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

49

Arguments

collect handle of the collection

num_written the actual number of bytes written

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

PS_APP_MISMATCHED_CMD The type of response is not PS_I2C_CMD_READ.

Details

This function should be called right after the function ps_collect_resp returns
PS_I2C_CMD_WRITE. Once the function ps_collect_resp is called again, then
data for I C write command will be discarded. However this function can be called
many times before the function ps_collect_resp is called.

5.6.4 I C Slave

Slave Enable (ps_i2c_slave_enable)

 int ps_i2c_slave_enable (PromiraChannelHandle channel,
 u08 addr,
 u16 maxTxBytes,
 u16 maxRxBytes);

Enable the I C subsystem as an I C slave device.

Arguments

channel handle of the channel

addr address of this slave

maxTxBytes max number of bytes to transmit per transaction

maxRxBytes max number of bytes to receive per transaction

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2 2

50

Details

The lower 7 bits of addr should correspond to the slave address of this I C
subsystem. If the topmost bit of addr is set, the slave will respond to a general call
transmission by an I C master. After having been addressed by a general call, the I
C slave treats the transaction no differently than a single slave communication.
There is no support for the hardware address programming feature of the general
call that is described in the I C protocol specification since that capability is not
needed for the Promira application.

If maxTxBytes is 0, there is no limit on the number of bytes that this slave will
transmit per transaction. If it is non-zero, then the slave will stop transmitting bytes
at the specified limit and subsequent bytes received by the master will be 0xff due
to the bus pull-up resistors. The response that is transmitted by the slave is set
through the ps_i2c_slave_set_response function described below. If the
maximum is greater than the response (as set through
i2cc_slave_set_response) the I C slave will wrap the response string as many
times as necessary to send the requested number of bytes.

If maxRxBytes is 0, the slave can receive an unlimited number of bytes from the
master. However, if it is non-zero, the slave will send a not-acknowledge bit after the
last byte that it accepts. The master should then release the bus. Even if the master
does not stop transmitting, the slave will return the received data back to the host
PC and then transition to a idle state, waiting to be addressed in a subsequent
transaction.

It is never possible to restrict a transmit or receive to 0 bytes. Furthermore, once the
slave is addressed by a master read operation it is always guaranteed to transmit at
least 1 byte.

If a master transaction is executed after the slave features have been enabled, the
slave features will remain enabled after the master transaction completes.

Slave Disable (ps_i2c_slave_disable)

 int ps_i2c_slave_disable (PromiraChannelHandle channel);

Disable the I C subsystem as an I C slave device.

Arguments

channel handle of the channel

Return Value

A status code is returned with PS_APP_OK on success.

Promira I2C/SPI Active User Manual v1.33.003

2

2 2

2

2

2 2

51

Specific Error Codes

None.

Details

None.

Slave Set Response (ps_i2c_slave_set_resp)

 int ps_i2c_slave_set_resp (PromiraChannelHandle channel,
 u08 num_bytes,
 const u08 * data_out);

Set the slave response in the event the I C subsystem is put into slave mode and
contacted by a master.

Arguments

channel handle of the channel

num_bytes number of bytes for the slave response

data_out pointer to the slave response

Return Value

The number of bytes accepted by the I C subsystem.

Specific Error Codes

None.

Details

The value of num_bytes must be greater than zero. If it is zero, the response string
is undefined until this function is called with the correct parameters.

If more bytes are requested in a transaction, the response string will be wrapped as
many times as necessary to complete the transaction.

The buffer space is 256 bytes.

Asynchronous Polling (ps_i2c_slave_poll)

 int ps_i2c_slave_poll (PromiraChannelHandle channel,
 int timeout);

Promira I2C/SPI Active User Manual v1.33.003

2

2

52

Check if there is any asynchronous data pending from the I C subsystem.

Arguments

channel handle of the channel

timeout timeout in milliseconds

Return Value

A status code indicating which types of asynchronous messages are available for
processing. See Table 11.

Table 11 : Status code enumerated types

PS_I2C_SLAVE_NO_DATA No asynchronous data is available.

PS_I2C_SLAVE_READ I C slave read data is available. Use function
ps_i2c_slave_read to get data.

PS_I2C_SLAVE_WRITE I C slave write stats are available. Use function
ps_i2c_slave_write_stats to get data.

PS_I2C_SLAVE_DATA_LOST I C slave data lost stats are available. Use
function ps_i2c_slave_data_lost_stats to
get data.

Specific Error Codes

None.

Details

Recall that, like all other Promira API functions, this function is not thread-safe.

If the timeout value is negative, the function will block indefinitely until data arrives. If
the timeout value is 0, the function will perform a non-blocking check for pending
asynchronous data.

This function sends a command to collect all slave data to I C subsystem and saves
it I C asynchronous slave queue. If there is any slave data in the queue, then it
returns the type of first slave data.

One can employ the following technique to guarantee that all pending asynchronous
slave data have been captured during each service cycle:

1. Call the polling function with a specified timeout.

2. If the polling function indicates that there is data available, call the appropriate
service function once for each type of data that is available.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

2

2

2

53

3. Next, call the polling function with a 0 timeout.

4. Call the appropriate service function once for each type of data that is available.

5. Repeat steps 3 and 4 until the polling function reports that there is no data
available.

Slave Write Statistics (ps_i2c_slave_write_stats)

 int ps_i2c_slave_write_stats (PromiraChannelHandle channel,
 u08 * addr,
 u16 * num_written);

Return number of bytes written from a previous Promira I C slave to I C master
transmission.

Arguments

channel handle of the channel

addr the address to which the sent message was received

num_written the number of bytes written by the slave

Return Value

Status code (see "Notes" section).

Specific Error Codes

PS_I2C_SLAVE_TIMEOUT There was no recent slave transmission.

PS_I2C_SLAVE_READ_ERROR This slave data is not I C slave write.

Details

The transmission of bytes from the Promira slave, when it is configured as an I C
slave, is asynchronous with respect to the PC host software. Hence, there could be
multiple responses queued up from previous write transactions.

The only possible status code is PS_I2C_STATUS_BUS_ERROR which can occur
when an illegal START, STOP, or RESTART condition appears on the bus during a
transaction. In this case the num_written may not exactly reflect the number of
bytes written by the slave. It can be off by 1.

Slave Read (ps_i2c_slave_read)

 int ps_i2c_slave_read (PromiraChannelHandle channel,
 u08 * addr,

Promira I2C/SPI Active User Manual v1.33.003

2 2

2

2

54

 u16 num_bytes,
 u08 * data_in
 u16 * num_read);

Read the bytes from an I C slave reception.

Arguments

channel handle of the channel

addr the address to which the received message was sent

num_bytes the maximum size of the data buffer

data_in array into which the data read are returned

num_read the actual number of bytes read by the slave

Return Value

Status code (see "Notes" section).

Specific Error Codes

PS_I2C_SLAVE_TIMEOUT There was no recent slave transmission.

PS_I2C_DROPPED_EXCESS_BYTES The msg was larger than num_bytes.

PS_I2C_SLAVE_READ_ERROR This slave data is not I C slave read.

Details

If the message was directed to this specific slave, *addr will be set to the value of
this slaves address. However, this slave may have received this message through a
general call addressing. In this case, *addr will be 0x80 instead of its own
address.

The num_bytes parameter specifies the size of the memory pointed to by data. It is
possible, however, that the received slave message exceeds this length. In such a
situation, PS_PS_I2C_DROPPED_EXCESS_BYTES is returned, meaning that
num_bytes was placed into data but the remaining bytes were discarded

There is no cause for alarm if the number of bytes read is less than num_bytes.
This simply indicates that the incoming message was short.

The reception of bytes by the Promira slave, when it is configured as an I C slave, is
asynchronous with respect to the PC host software. Hence, there could be multiple
responses queued up from previous transactions.

The only possible status code is PS_I2C_STATUS_BUS_ERROR which can occur
when an illegal START, STOP, or RESTART condition appears on the bus during a
transaction.

Promira I2C/SPI Active User Manual v1.33.003

2

2

2

55

Slave Data Lost Statistics (ps_i2c_slave_data_lost_stats)

 int ps_i2c_slave_data_lost_stats (PromiraChannelHandle channel);

Return number of slave read/write lost from a previous Promira I C slave to I C master
transmission.

Arguments

channel handle of the channel

Return Value

The function returns the number of I C slave read/write

Specific Error Codes

PS_I2C_SLAVE_TIMEOUT There was no recent slave transmission.

PS_I2C_SLAVE_READ_ERROR This slave data is not I C slave data lost.

Details

There are two asynchronous slave queues, one in the host and the other is in the
device. When the capacity of both queues is all 255. If the number of slave data
exceeds 255 in the device, I C slave read/write is counted as lost and returns back
to the host.

5.7 SPI Interface

5.7.1 SPI Notes

1. The SPI master and slave must both be configured to use the same bit protocol
(mode).

2. It is not necessary to set the bitrate for the Promira SPI slave.

3. It is always advisable to set the slave response before first enabling the slave.
This ensures that valid data is sent to any requesting master.

4. The maximum amount of outstanding slave data to collect is 2 MB-1. It is
advisable to collect the SPI slave data as soon as possible to not lose data.

5. The maximum data size of single command is 1MB. The maximum amount of
data in a queue is 64MB-1.

Promira I2C/SPI Active User Manual v1.33.003

2 2

2

2

2

56

6. The master and slave functionality cannot be used simultaneously. This means
the slave must be disabled before calling any master related commands.

5.7.2 General SPI

Configure (ps_spi_configure)

 int ps_spi_configure (PromiraChannelHandle channel,
 PromiraSpiMode mode,
 PromiraSpiBitorder bitorder,
 u08 ss_polarity);

Configure the SPI master or slave interface.

Arguments

channel handle of the channel

mode PS_SPI_MODE_0, PS_SPI_MODE_1,
PS_SPI_MODE_2 or PS_SPI_MODE_3

bitorder PS_SPI_BITORDER_MSB or PS_SPI_BITORDER_LSB

ss_polarity bitmask of the polarity of the slave select signals

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

These configuration parameters specify how to clock the bits that are sent and
received on the Promira SPI interface.

The mode option configures the SPI mode. See the figure found in the "SPI
Background" chapter for more details.

The bitorder option is used to indicate whether LSB or MSB is shifted first.

Promira I2C/SPI Active User Manual v1.33.003

57

The ss_polarity option is a bitmask that indicates whether each SS line is active high
or active low. For example, setting ss_polarity to 0x05 would mean that SS3 and
SS1 are active high and all others are active low.

Configure Delays (ps_spi_configure_delays)

 int ps_spi_configure_delays (PromiraChannelHandle channel,
 u08 word_delay);

Configure the delays.

Arguments

channel handle of the channel

word_delay The number of clock cycles between data words.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

The word_delay parameter is a user-definable delay between words. It can be 0 or
greater than 1 and no gap is included after the last word.

Enable SS Lines (ps_spi_enable_ss)

 int ps_spi_enable_ss (PromiraChannelHandle channel,
 u08 ss_enable);

Enable select SS lines and disable GPIO lines.

Arguments

channel handle of the channel

ss_enable A bitmask based on the 8 SS lines where 1 corresponds
to enable and 0 to disable.

Return Value

A status code is returned with PS_APP_OK on success.

Promira I2C/SPI Active User Manual v1.33.003

58

Specific Error Codes

None.

Details

ss_enable is to enable which pins are configured to ss line instead of GPIO. The
least significant bit is SS0.

Enable Master Outputs (ps_queue_spi_oe)

 int ps_queue_spi_oe (PromiraQueueHandle queue,
 u08 oe);

Enable/disable the outputs.

Arguments

queue handle of the queue

oe 0 to disable the outputs, and 1 to enable

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function enables and disables the outputs on the Promira.

Queue Slave Select Signals (ps_queue_spi_ss)

 int ps_queue_spi_ss (PromiraQueueHandle queue,
 u08 ss_assert);

Queue the assertion and de-assertion of slave select signals.

Arguments

queue handle of the queue

ss_assert bitmask where 1 asserts the slave select and 0 de-asserts

Return Value

A status code is returned with PS_APP_OK on success.

Promira I2C/SPI Active User Manual v1.33.003

59

Specific Error Codes

None.

Details

The least significant bit is SS0.

The outputs should be enabled using ps_queue_spi_oe before calling this
function.

5.7.3 SPI Master

Set Bitrate (ps_spi_bitrate)

 int ps_spi_bitrate (PromiraChannelHandle channel,
 int bitrate_khz);

Set the SPI bitrate in kilohertz.

Arguments

channel handle of the channel

bitrate_khz the requested bitrate in khz

Return Value

This function returns the actual bitrate set.

Specific Error Codes

None.

Details

The power-on default bitrate is 1000 kHz (1 MHz).

Only certain discrete bitrates are supported by the SPI subsystem. As such, this
actual bitrate set will be less than or equal to the requested bitrate unless the

Promira I2C/SPI Active User Manual v1.33.003

60

requested value is less than 31 kHz, in which case the SPI subsystem will default to
31 kHz.

If bitrate_khz is 0, the function will return the bitrate presently set on the Promira
application and the bitrate will be left unmodified.

Queue a Delay in Cycles (ps_queue_spi_delay_cycles)

 int ps_queue_spi_delay_cycles (PromiraQueueHandle queue,
 u32 cycles);

Queue a delay value on the bus in units of clock cycles.

Arguments

queue handle of the queue

cycles cycles of delay to add to the outbound shift

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Queues cycles amount of delay on the bus. These are in units of clock cycles as set
with ps_spi_bitrate.

Actual number of cycles queued is returned when collecting a response using
ps_collect_resp.

Queue a Delay in Nanoseconds (ps_queue_spi_delay_ns)

 int ps_queue_spi_delay_ns (PromiraQueueHandle queue,
 u32 nanoseconds);

Queue a delay value on the bus in units of nanoseconds.

Arguments

queue handle of the queue

nanoseconds amount of time for delay in nanoseconds

Return Value

Promira I2C/SPI Active User Manual v1.33.003

61

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Queues nanoseconds amount of delay on the bus. The fundamental unit of delay
that can be queued on the Promira SPI bus is the clock period. Therefore,
requested delay will be rounded up to this time span.

The requested number of nanoseconds must be greater than zero and less than or
equal to 2 seconds. If the requested number of nanoseconds is out of bounds, no
delay is queued.

The actual number of nanoseconds queued is returned when collecting a response
using ps_collect_resp.

Queue SPI Master Write (ps_queue_spi_write)

 int ps_queue_spi_write (PromiraQueueHandle queue,
 PromiraSpiIOMode io,
 u08 word_size,
 u32 out_num_words,
 const u08 * data_out);

Queue a command that writes a stream of words to the downstream SPI slave device.

Arguments

queue handle of the queue

io IO mode flag as defined in table 12

word_size number of bits for a word; between 2 and 32

out_num_words number of words to send

data_out pointer to the array of words to send

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

62

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The outputs should be enabled using ps_queue_spi_oe before calling this
function.

data_out is a buffer containing a bitwise concatenation of words to be sent out.
For instance, when word size is 4 and words are 0x1 0x2 0x3 0x4 0x5, then data in
a buffer looks like 0x12, 0x34, 0x50. The size of data_out should be equal to or
bigger than (word_size * out_num_words + 7) / 8.

The actual data read and the number of words read will be returned with the
function ps_collect_resp and ps_collect_spi_read when collecting.

Table 12 : SPI IO Modes

PS_SPI_IO_STANDARD Standard, full-duplux SPI.

PS_SPI_IO_DUAL Dual mode SPI.

PS_SPI_IO_QUAD Quad mode SPI.

Queue SPI Master Write Word (ps_queue_spi_write_word)

 int ps_queue_spi_write_word (
 PromiraQueueHandle queue,
 PromiraSpiIOMode io,
 u08 word_size,
 u32 out_num_words,
 u32 word);

Queue a command that writes a stream of the same word to the downstream SPI slave
device

Arguments

queue handle of the queue

io IO mode flag as defined in table 12

word_size number of bits for a word; between 2 and 32

out_num_words number of words to send

word value of the word to queue

Return Value

Promira I2C/SPI Active User Manual v1.33.003

63

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Queues out_num_words number of words to send and sets each word to the value
of word.

The outputs should be enabled using ps_queue_spi_oe before calling this
function.

Queue SPI Master Read (ps_queue_spi_read)

 int ps_queue_spi_read (PromiraQueueHandle queue,
 PromiraSpiIOMode io,
 u08 word_size,
 u32 in_num_words);

Queue a command that performs an SPI read operation.

Arguments

queue handle of the queue

io IO mode flag as defined in table 12

word_size number of bits for a word; between 2 and 32

in_num_words number of words to clock in

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The outputs should be enabled using ps_queue_spi_oe before calling this
function.

Promira I2C/SPI Active User Manual v1.33.003

64

When io is PS_SPI_IO_STANDARD, this function is equivalent to
ps_queue_spi_write_word with word equal to 0. When io is
PS_SPI_IO_DUAL or PS_SPI_IO_QUAD, the clock is generated and the data lines
are set to inputs.

The actual data read and the number of words read will be returned with the
function ps_collect_resp and ps_collect_spi_read when collecting.

Collect a Master Write/Read (ps_collect_spi_read)

 int ps_collect_spi_read (PromiraCollectHandle collect,
 u08 * word_size,
 u32 in_num_bytes,
 u08 * data_in);

Collect the response of SPI master read.

Arguments

collect handle of the collection

word_size number of bits for a word received

in_num_bytes number of bytes to receive

data_in array into which the data read are returned

Return Value

This function returns the total number of bytes read from the slave.

Specific Error Codes

PS_APP_MISMATCHED_CMD The type of response is not PS_SPI_CMD_READ.

Details

This function should be called right after the function ps_collect_resp returns
PS_SPI_CMD_READ. Once the function ps_collect_resp is called again, then

Promira I2C/SPI Active User Manual v1.33.003

65

data received will be discarded. However this function can be called many times
before the function ps_collect_resp is called.

data_in is returned with data containing a bitwise concatenation of words
received. For instance, when word size is 4 and words received are 0x1 0x2 0x3
0x4 0x5, then data returned looks like 0x12, 0x34, 0x50.

5.7.4 SPI Slave

Slave Enable (ps_spi_slave_enable)

 int ps_spi_slave_enable (PromiraChannelHandle channel,
 PromiraSlaveMode mode);

Enable the SPI subsystem as an SPI slave device.

Arguments

channel handle of the channel

mode slave mode
Table 13 : SPI Slave Modes

PS_SPI_SLAVE_MODE_STD Basic slave capabilities

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

None.

Slave Disable (ps_spi_slave_disable)

 int ps_spi_slave_disable (PromiraChannelHandle channel);

Disable the SPI subsystem as an SPI slave device.

Arguments

channel handle of the channel

Promira I2C/SPI Active User Manual v1.33.003

66

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

None.

Configure SPI Slave (ps_spi_std_slave_configure)

 int ps_spi_std_slave_configure(
 PromiraChannelHandle channel,
 PromiraSpiMode io,
 u08 flags);

Configure the SPI slave parameters.

Arguments

channel handle of the channel

io IO mode flag as defined in table 12

flags flags as defined in table 14
Table 14 : SPI Slave Flags

PS_SPI_SLAVE_NO_SS Use the slave timeout instead of the SS line

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

67

When the PS_SPI_SLAVE_NO_SS flag is set, the timeout configured with
ps_spi_slave_timeout is used to define SPI transaction boundaries instead of
the slave select signal.

Set SPI Slave Timeout (ps_spi_slave_timeout)

 int ps_spi_slave_timeout (PromiraChannelHandle channel,
 u32 timeout_ns);

Set the SPI slave timeout in nanoseconds.

Arguments

channel handle of the channel

timeout_ns SPI transaction timeout in nanoseconds (minimum of 1000 ns)

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

When the PS_SPI_SLAVE_NO_SS flag is set in ps_spi_std_slave_configure,
this timeout is used to define SPI transaction boundaries instead of the slave select
signal.

Set SPI Slave Host Read Size (ps_spi_slave_host_read_size)

 int ps_spi_slave_host_read_size (
 PromiraChannelHandle channel,
 u32 read_size);

Set the SPI slave host read size.

Arguments

channel handle of the channel

read_size amount of slave data to collect before sending to host

Return Value

A status code is returned with PS_APP_OK on success.

Promira I2C/SPI Active User Manual v1.33.003

68

Specific Error Codes

None.

Details

Instead of waiting for an entire SPI transaction to complete before sending the data
to the PC, this function sets a limit for the amount of data to collect before sending it
back to the PC.

For example, say the host read size is set to 64KB. If the Promira receives a large
transaction of 1MB from the master, the user will receive the 1MB worth of data in
64KB chunks when calling the ps_spi_slave_read function.

When the last chunk is received, ps_spi_slave_read will set the is_last flag in
read_info.

Slave Set Response (ps_spi_std_slave_set_resp)

 int ps_spi_std_slave_set_resp (PromiraChannelHandle channel,
 u16 num_bytes,
 const u08 * data_out);

Set the slave response in the event the SPI subsystem is put into slave mode and
contacted by a master.

Arguments

channel handle of the channel

num_bytes number of bytes for the slave response

data_out pointer to the slave response

Return Value

The number of bytes accepted by the SPI subsystem for the response.

Specific Error Codes

None.

Details

The value of num_bytes must be greater than zero. If it is zero, the response string
is undefined until this function is called with the correct parameters.

Promira I2C/SPI Active User Manual v1.33.003

69

Due to limited buffer space on the SPI subsystem, the device may only accept a
portion of the intended response. If the value returned by this function is less than
num_bytes the SPI subsystem has dropped the remainder of the bytes.

If more bytes are requested in a transaction, the response string will be wrapped as
many times as necessary to complete the transaction.

The buffer space will nominally be 256 bytes.

Asynchronous Polling (ps_spi_slave_poll)

 int ps_spi_slave_poll (PromiraChannelHandle channel,
 int timeout);

Check if there is any asynchronous slave data pending from the SPI subsystem.

Arguments

channel handle of the channel

timeout timeout in milliseconds

Return Value

A status code indicating which types of asynchronous messages are available for
processing. See Table 11.

Table 11 : Status code enumerated types

PS_SPI_SLAVE_NO_DATA No asynchronous slave data is available.

PS_SPI_SLAVE_DATA SPI slave read data is available. Use
ps_spi_slave_read to get data.

PS_SPI_SLAVE_DATA_LOST SPI slave data lost stats are available. Use
ps_spi_slave_data_lost_stats to get
data.

Specific Error Codes

None.

Details

This function is like the function ps_i2c_slave_poll. However the SPI slave data
is separately handled and saved in the SPI asynchronous queue.

Promira I2C/SPI Active User Manual v1.33.003

70

Slave Read (ps_spi_slave_read)

 int ps_spi_slave_read (PromiraChannelHandle channel,
 PromiraSpiSlaveReadInfo * read_info,
 u32 in_num_bytes,
 u08 * data_in);

Read the bytes from an SPI slave reception.

Arguments

channel handle of the channel

read_info index of the subsystem

in_num_bytes the maximum size of the data_in buffer

data_in array into which the data read are returned

Return Value

This function returns the number of bytes read asynchronously.

Specific Error Codes

PS_SPI_SLAVE_TIMEOUT There was no recent slave transmission.

PS_SPI_DROPPED_EXCESS_BYTES The data was larger than num_bytes.

PS_SPI_SLAVE_READ_ERROR The slave data is not SPI slave data lost.

Details

The in_num_bytes parameter specifies the size of the memory pointed to by data.
It is possible, however, that the received slave message exceeds this length. In
such a situation, PS_SPI_DROPPED_EXCESS_BYTES is returned, meaning that
num_bytes was placed into data but the remaining bytes were discarded.

There is no cause for alarm if the number of bytes read is less than in_num_bytes
. This simply indicates that the incoming message was short.

The reception of bytes by the SPI subsystem, when it is configured as an SPI slave,
is asynchronous with respect to the PC host software. Hence, there could be
multiple responses queued up from previous write transactions.

SPI Slave Read Info Struct

Promira I2C/SPI Active User Manual v1.33.003

71

A SPI slave read info struct type, PromiraSpiSlaveReadInfo, is used to provide
important meta information about the slave transactions that have happened
asynchronously.

 struct PromiraSpiSlaveReadInfo {
 u32 in_data_bits;
 u32 out_data_bits;
 u08 header_bits;
 u08 resp_id;
 u08 ss_mask;
 u08 is_last;
 };

Table 16 : PromiraSpiSlaveReadInfo field descriptions

in_data_bits Number of bits received in data_in.

out_data_bits Number of bits the slave shifted out. When the slave is
configured as PS_SPI_IO_STANDARD, out_data_bits
equals in_data_bits. For PS_SPI_IO_DUAL and
PS_SPI_IO_QUAD, out_data_bits equals 0.

header_bits Always 0.

resp_id Always 0xff.

ss_mask This is a bitmask of the slave select line that is set (similar to
the bitmask found in ps_spi_enable_ss). ss_mask will be
0xff if the user selects PS_SPI_SLAVE_NO_SS.

is_last When ps_spi_slave_host_read_size is set to a value
less than the total data size for a single transaction, the
reads will be broken into chunks. The is_last flag is set on
the last chunk.

Slave Data Lost Statistics (ps_spi_slave_data_lost_stats)

 int ps_spi_slave_data_lost_stats (PromiraChannelHandle channel);

Return number of slave read/write lost from a previous Promira SPI slave to SPI master
transmission.

Arguments

channel handle of the channel

Return Value

Promira I2C/SPI Active User Manual v1.33.003

72

The function returns the number of SPI slave read/write

Specific Error Codes

PS_SPI_SLAVE_READ_ERROR The slave data is not SPI slave data lost.

Details

Returns the number of SPI transactions lost due to the overflow of the internal
Promira buffer.

5.8 GPIO Interface

5.8.1 GPIO Notes

1. There is no check in the GPIO API calls to see if a particular GPIO line is enabled
in the current configuration. If a line is not enabled for GPIO, the get function will
simply return 0 for those bits. Another example is if one changes the GPIO
directions for I C lines while the I C subsystem is still active. These new direction
values will be cached and will automatically be activate if a later call to
ps_app_configure disables the I C subsystem and enables GPIO for the I C
lines. The same type of behavior holds for ps_gpio_set.

2. Additionally, for lines that are not configured as inputs, a change in the GPIO line
using ps_gpio_set will be cached and will take effect the next time the line is
active and configured as an input.

3. When initially starting an application with pm_load, the directions default to all
input. Also the GPIO subsystem is off by default. It must be activated by using
ps_app_configure.

5.8.2 GPIO Interface

Direction (ps_gpio_direction)

 int ps_gpio_direction (PromiraChannelHandle channel,
 u32 direction_mask);

Change the direction of the GPIO lines between input and output directions.

Arguments

channel handle of the channel

Promira I2C/SPI Active User Manual v1.33.003

2 2

2 2

73

direction_mask each bit corresponds to the physical line. If a line's
bit is 0, the line is configured as an input.
Otherwise it will be an output.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

None.

Queue a GPIO Direction (ps_queue_gpio_direction)

 int ps_queue_gpio_direction (PromiraQueueHandle queue,
 u32 direction_mask);

Queue a command that changes the direction of the GPIO lines between input and output
directions.

Arguments

queue handle of the queue

direction_mask each bit corresponds to the physical line. If a line's
bit is 0, the line is configured as an input.
Otherwise it will be an output.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

Get Available GPIOs (ps_gpio_query)

 int ps_gpio_query (PromiraChannelHandle channel);

Promira I2C/SPI Active User Manual v1.33.003

74

Returns the bitmask of which GPIOs are available based on the current app configuration.

Arguments

channel handle of the channel

Return Value

An integer value, organized as a bitmask in the fashion. Any GPIO pin that is
available will have a its corresponding bit active. If the line is not available as GPIO
the bit will not be active in the bit mask.

Specific Error Codes

None.

Details

None.

Get (ps_gpio_get)

 int ps_gpio_get (PromiraChannelHandle channel);

Get the value of current GPIO inputs.

Arguments

channel handle of the channel

Return Value

An integer value, organized as a bitmask. Any line that is logic high will have a its
corresponding bit active. If the line is logic low the bit will not be active in the bit
mask.

Specific Error Codes

None.

Details

A line's bit position in the mask will be 0 if it is configured as an output or if it
corresponds to a subsystem that is still active.

Queue a GPIO Get (ps_queue_gpio_get)

 int ps_queue_gpio_get (PromiraQueueHandle queue);

Promira I2C/SPI Active User Manual v1.33.003

75

Queue a command that gets the value of current GPIO inputs.

Arguments

queue handle of the queue

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The current state of the GPIO input lines will be returned with the function
ps_collect_resp.

Set (ps_gpio_set)

 int ps_gpio_set (PromiraChannelHandle channel,
 u32 value);

Set the value of current GPIO outputs.

Arguments

channel handle of the channel

value a bitmask specifying which outputs should be set to logic
high and which should be set to logic low.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

If a line is configured as an input or not activated for GPIO, the output value will be
cached. The next time the line is an output and activated for GPIO, the output value
previously set will automatically take effect.

Promira I2C/SPI Active User Manual v1.33.003

76

Queue a GPIO Set (ps_queue_gpio_set)

 int ps_queue_gpio_set (PromiraQueueHandle queue,
 u32 value);

Queue a command that sets the value of current GPIO outputs.

Arguments

queue handle of the queue

value a bitmask specifying which outputs should be set to logic high
and which should be set to logic low.

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

Change (ps_gpio_change)

 int ps_gpio_change (PromiraChannelHandle channel,
 u16 timeout_ms);

Block until there is a change on the GPIO input lines.

Arguments

channel handle of the channel

timeout_ms time to wait for a change in milliseconds

Return Value

The current state of the GPIO input lines.

Specific Error Codes

None.

Details

Promira I2C/SPI Active User Manual v1.33.003

77

The function will return either when a change has occurred or the timeout expires.
Pins configured for I C or SPI will be ignored. Pins configured as outputs will be
ignored. The timeout, specified in milliseconds, has a precision of approximately
2 ms. The maximum allowable timeout is approximately 60 seconds. If the timeout
expires, this function will return the current state of the GPIO lines. It is the
applications responsibility to save the old value of the lines and determine if there is
a change based on the return value of this function.

The function ps_gpio_change will return immediately with the current value of the
GPIO lines for the first invocation after any of the following functions are called:
ps_app_configure, ps_gpio_direction.

Queue a GPIO Change (ps_queue_gpio_change)

 int ps_queue_gpio_change (PromiraQueueHandle queue,
 u16 timeout_ms);

Queue a command that blocks until there is a change on the GPIO input lines.

Arguments

queue handle of the queue

timeout_ms time to wait for a change in milliseconds

Return Value

A status code is returned with PS_APP_OK on success.

Specific Error Codes

None.

Details

This function queues the command, it will be executed when the function
ps_queue_submit or ps_queue_async_submit is called.

The current state of the GPIO input lines will be returned with the function
ps_collect_resp.

5.9 Error Codes

Table 17 : I2C/SPI Active Applications Error Codes

Promira I2C/SPI Active User Manual v1.33.003

2

78

Literal Name Value ps_app_status_string() return value

PS_APP_OK 0 ok

PS_APP_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

PS_APP_UNABLE_TO_LOAD_DRIVER -2 unable to load USB driver

PS_APP_UNABLE_TO_LOAD_FUNCTION -3 unable to load binding function

PS_APP_INCOMPATIBLE_LIBRARY -4 incompatible library version

PS_APP_INCOMPATIBLE_DEVICE -5 incompatible device version

PS_APP_COMMUNICATION_ERROR -6 communication error

PS_APP_UNABLE_TO_OPEN -7 unable to open device

PS_APP_UNABLE_TO_CLOSE -8 unable to close device

PS_APP_INVALID_HANDLE -9 invalid device handle

PS_APP_CONFIG_ERROR -10 configuration error

PS_APP_MEMORY_ALLOC_ERROR -11 unable to allocate memory

PS_APP_UNABLE_TO_INIT_SUBSYSTEM -12 unable to initialize subsystem

PS_APP_INVALID_LICENSE -13 invalid license

PS_APP_PENDING_ASYNC_CMD -30 pending respones to collect

PS_APP_TIMEOUT -31 timeout to collect a response

PS_APP_CONNECTION_LOST -32 connection lost

PS_APP_CONNECTION_FULL -33 too many connections

PS_APP_QUEUE_FULL -50 queue is full

PS_APP_QUEUE_INVALID_CMD_TYPE -51 invalid command to be added

PS_APP_QUEUE_EMPTY -52 no command to send

PS_APP_NO_MORE_TO_COLLECT -80 no more response to collect

PS_APP_UNKNOWN_CMD -81 unknown response received

PS_APP_MISMATCHED_CMD -82 response doesn't match with the command

PS_APP_UNKNOWN_CMD -83 unknown command sent

PS_APP_LOST_RESPONSE -84 response queue in the device was full

PS_I2C_NOT_AVAILABLE -100 i2c feature not available

PS_I2C_NOT_ENABLED -101 i2c not enabled

PS_I2C_READ_ERROR -102 i2c read error

PS_I2C_WRITE_ERROR -103 i2c write error

PS_I2C_SLAVE_BAD_CONFIG -104 i2c slave enable bad config

PS_I2C_SLAVE_READ_ERROR -105 i2c slave read error

PS_I2C_SLAVE_TIMEOUT -106 i2c slave timeout

Promira I2C/SPI Active User Manual v1.33.003

79

PS_I2C_DROPPED_EXCESS_BYTES -107 i2c slave dropped excess bytes

PS_I2C_BUS_ALREADY_FREE -108 i2c bus already free

PS_SPI_NOT_AVAILBLE -200 spi feature not available

PS_SPI_NOT_ENABLED -201 spi not enabled

PS_SPI_WRITE_ERROR -202 spi write error

PS_SPI_SLAVE_READ_ERROR -203 spi slave read error

PS_SPI_SLAVE_TIMEOUT -204 spi slave timeout

PS_SPI_DROPPED_EXCESS_BYTES -205 spi slave dropped excess bytes

Promira I2C/SPI Active User Manual v1.33.003

80

6 Electrical Specifications

6.1 DC Characteristics

Table 18 : Absolute Maximum Ratings

Symbol Parameter Conditions
and Notes

Min Max Units

V Input voltage (1, 3, 9, 14, 15, 17, 19,
20, 26, 31, 32, 33 pins)

-0.5 5.5 V

V Input voltage (5, 7, 8, 11, 13, 21, 23,
25, 27 pins)

-0.5 4.6 V

Table 19 : Operating Conditions

Symbol Description Conditions & Notes Min Max Units

T Ambient Operating Temperature 10 (50) 35 (95) C (F)

I Core Current Consumption (1) 500 mA

Notes:

(1) The core current consumption includes the current consumption for the entire internal Promira
platform, but does not include the output signals current consumption. Typical current consumption
example at 5 V with 12.5 MHz single SPI master read operation is 340 mA using USB connection.
Add 70 mA for operation with gigabit Ethernet connection.

Table 20 : DC Characteristics (1)

Symbol Paramater Conditions
and Notes

Min Max Units

V Target power voltage (4 and
6 pins)

3.3 5.0 V

V IO power voltage (22 and
24 pins)

0.9 3.45 V

V Input low voltage (1, 3 pins) -0.5 0.25Vlevel V

V Input high voltage (1, 3
pins)

0.7Vlevel 5.5 V

Promira I2C/SPI Active User Manual v1.33.003

IO

IO

a

Core

VTGT

VIO

IL

IH

81

V Output low voltage (1, 3
pins)

0.2 V

V Output high voltage (1, 3
pins)

(2) V

V Input low voltage (5, 7, 8,
11, 13, 21, 23, 25, 27 pins)

Vlevel=3.3V 0.8 V

V Input high voltage (5, 7, 8,
11, 13, 21, 23, 25, 27 pins)

Vlevel=3.3V 2 V

V Output low voltage (5, 7, 8,
11, 13, 21, 23, 25, 27 pins)

Vlevel=3.3V 0.7 V

V Output high voltage (5, 7, 8,
11, 13, 21, 23, 25, 27 pins)

Vlevel=3.3V 2.3 V

V Input low voltage (9, 14, 15,
17, 19, 20, 26, 31, 32, 33
pins)

0.1Vlevel V

V Input high voltage (9, 14,
15, 17, 19, 20, 26, 31, 32,
33 pins)

0.9Vlevel V

V Output low voltage (9, 14,
15, 17, 19, 20, 26, 31, 32,
33 pins)

0.1Vlevel V

V Output high voltage (9, 14,
15, 17, 19, 20, 26, 31, 32,
33 pins)

0.9Vlevel V

I Target power current (4 and
6 pins)

(3) 50 mA

I IO power current (22 and 24
pins)

(3) 50 mA

I Input/output current (I C/
SPI/GPIO pins)

(4) 10 mA

I Input/output leakage current
(I C/SPI/GPIO pins)

(5) 100 µA

C Input capacitance (I C/SPI/
GPIO pins)

1 MHz 8 pF

Notes:

(1) Vlevel is the configured level shift voltage for the I C/SPI/GPIO signals. The level shifter
resolution is approximately 0.015V.

Promira I2C/SPI Active User Manual v1.33.003

OL

OH

IL

IH

OL

OH

IL

IH

OL

OH

VTGT

VIO

IO
2

IOL
2

IN
2

2

82

(2) Outputs are open collector, and therefor they are set by their pull-ups values and pull-ups
voltage rail.

(3) Option 1: Two pins have 50 mA each. Option 2: One pin has 100 mA, and one pin has 0 mA,
etc. Total current consumption on both pins should not exceed 100 mA.

(4) Option 1: Six pins have 10 mA each. Option 2: One pin has 60 mA, and the other pins have
0 mA. Etc. Total current consumption on all six pins should not exceed 60 mA.

(5) All I C/SPI/GPIO inputs (except for SPI SS signals) are high-impedance. Each SS signal has
10k Ohm pull-up resistor.

Table 21 : Current Consumption Calculation Example

Pin Symbol Description Conditions
& Notes

Max
per
pin

Max
all

pins

Units

NA I Core Current
Consumption

(1) 500 500 mA

4, 6 V Target Power (2) 50 100 mA

22, 24 V IO Power (2) 50 100 mA

1, 3, 9,
14, 15,
17, 19,
20, 26,
31, 32,
33. 5, 7,
8, 11,
13, 21,
23, 25,
27

SCL/GPIO00, SDA/GPIO-01,
SS0/GPIO02, SS2/GPIO03,
SS1/GPIO04, SS3/GPIO05,
SS4/GPIO06, SS5/GPIO07,
SS6/GPIO08, GPIO13,
GPIO14, SS7/GPIO15, MISO,
SCLK, MOSI, IO2, IO3,
GPIO9, GPIO10, GPIO11,
GPIO12

I2C/SPI
Signals

(3) 10 60 mA

Total Current Consumption
For Promira Core and Outputs

(4) 760 mA

Notes:

(1) The core current consumption includes the current consumption for the entire internal Promira
platform, but does not include the output signals current consumption.

(2) Option 1: Two pins have 50 mA each. Option 2: One pin has 100 mA, and one pin has 0 mA.
Etc. Total current consumption on both pins should not exceed 100 mA.

Promira I2C/SPI Active User Manual v1.33.003

2

Core

TGT

IO

83

(3) Option 1: Six pins have 10 mA each. Option 2: One pin has 60 mA, and the other pins have
0 mA. Etc. Total current consumption on all pins should not exceed 60 mA.

(4) If the total current consumption for the Promira platform core and outputs is over 500 mA, then a
USB 3.0 port and USB 2.0 cable or Total Phase external AC adapter should be used. A USB 3.0
port supplies up to 900 mA. A USB 2.0 port supplies up to 500 mA. Total Phase external AC
adapter supplies up to 1.2 A. In this example the total current consumption for the Promira platform
core and outputs is 760 mA, therefor USB 3.0 port and USB 2.0 cable or Total Phase external AC
adapter should be used.

6.2 AC Characteristics

6.2.1 SPI AC Characteristics

Table 22 (1) : SPI Master Timing Parameters

Symbol Parameter Min Typical Max Units

t SS# assert to first SCLK rising edge (User
configurable (3))

1 t

t Last SCLK failing edge to SS# deassert
(User configurable (3))

1.5 t

t Clock period 12.5 ns

t Output delay for data output w.r.t to SCLK
(from enable edge of SCLK to data being
stable on data output)

2 ns

t Data hold output from enable edge of SCLK 0 ns

t Setup time for data input w.r.t to capturing
edge of SCLK

3 ns

t Hold time for data input w.r.t to capturing
edge of SCLK

3 ns

t Delay between data words (user configurable
(4))

0 t

t Delay between 2 data transactions (SS
deassert to SS assert. User configurable (5))

0 t

Notes:

(1) All values are for 3.3V SPI signals condition. See also sections 2.3.1 & 2.3.3.

Promira I2C/SPI Active User Manual v1.33.003

SSSCK SCK

SCKSS SCK

SCK

v

HO

SU

H

WORD SCK

TXN SCK

84

(2) Promira Quad SPI master employs a flexible sampling scheme on the input data to enable the
device to run at higher speeds. The data is internally sampled half a clock cycle later

(3) The user can configure the SPI timing parameters t and t by adding the API function
ps_queue_spi_delay_cycles between the API functions ps_queue_spi_ss and ps_queue_spi_write.

(4) The user can configure the SPI timing parameter t by using the API function
ps_spi_configure_delays.

(5) The user can configure the SPI timing parameter t by adding the API function
ps_queue_spi_delay_cycles between submitting twice the function ps_queue_spi_ss (the first one
for SS deassert and the second one for SS assert).

Table 23 (1) : SPI Slave Timing Parameters

Symbol Parameter Min Typical Max Units

t SS# assert to first SCLK rising edge 1 t

t Last SCLK failing edge to SS# deassert 1 t

t Clock period 50 ns

t Output delay for data output w.r.t to SCLK
(from enable edge of SCLK to data being
stable on data output)

20 ns

t Data hold output from enable edge of SCLK 0.5 t

t Setup time for data input w.r.t to capturing
edge of SCLK

5 ns

t Hold time for data input w.r.t to capturing
edge of SCLK

5 ns

t Delay between data words 0 t

t Delay between 2 data transactions (SS
deassert to SS assert.)

0 t

Notes:

(1) All values are for 3.3V SPI signals condition. See also sections 2.3.1 & 2.3.3.

Promira I2C/SPI Active User Manual v1.33.003

SSSCK SCKSS

WORD

TXN

SSSCK SCK

SCKSS SCK

SCK

v

HO SCK

SU

H

WORD SCK

TXN SCK

85

Figure 7 : SPI Master / Slave (POL=0 PHA=0 SS=L)
Waveform

Figure 8 : SPI Master / Slave (POL=0 PHA=0 SS=L) Byte
Timing

6.2.2 I C AC Characteristics

Table 24 : I C Standard Mode Timing Parameters

Symbol Parameter Condition Min Max Units

t SCL Clock Frequency 0 100 KHz

t Hold Time (repeated) START Condition 4.0 - µs

t Low period of the SCL Clock 4.7 - µs

t High period of the SCL Clock 4.0 - µs

t Set-up time for a repeated START condition 4.7 - µs

t Data hold time 0 - µs

t Data setup time 250 - ns

Promira I2C/SPI Active User Manual v1.33.003

2

2

SCL

HD;SA

LOW

HIGH

SU;STA

HD;DAT

SU;DAT

86

t Setup time for STOP condition 4.0 - µs

t Bus free time between STOP and START condition 4.7 - µs

Table 25 : I C Fast Mode Timing Parameters

Symbol Parameter Condition Min Max Units

t SCL Clock Frequency 0 400 KHz

t Hold Time (repeated) START Condition 0.6 - µs

t Low period of the SCL Clock 1.3 - µs

t High period of the SCL Clock 0.6 - µs

t Set-up time for a repeated START condition 0.6 - µs

t Data hold time 0 - µs

t Data setup time 100 - ns

t Setup time for STOP condition 0.6 - µs

t Bus free time between STOP and START condition 1.3 - µs

Table 26 : I C Fast Mode Plus Timing Parameters

Symbol Parameter Condition Min Max Units

t SCL Clock Frequency 0 1000 KHz

t Hold Time (repeated) START Condition 0.26 - µs

t Low period of the SCL Clock 0.5 - µs

t High period of the SCL Clock 0.26 - µs

t Set-up time for a repeated START condition 0.26 - µs

t Data hold time 0 - µs

t Data setup time 50 - ns

t Setup time for STOP condition 0.26 - µs

t Bus free time between STOP and START condition 0.5 - µs

Promira I2C/SPI Active User Manual v1.33.003

SU;STO

BUF

2

SCL

HD;SA

LOW

HIGH

SU;STA

HD;DAT

SU;DAT

SU;STO

BUF

2

SCL

HD;SA

LOW

HIGH

SU;STA

HD;DAT

SU;DAT

SU;STO

BUF

87

Figure 9 : I C Standard, Fast, & Fast Plus modes
Waveform

6.2.3 General AC Characteristics

Table 27 : Internal Delay Parameters

Voltage Vlvl (V) Delay t , t (n) Typical

3.3 1.4

2.5 1.8

1.8 2.2

1.5 2.7

1.2 3.4

1.0 4.6

0.9 5.8

Table 28 : Standard 120 mm Cable Delay Parameters

Delay t , t (n) Typical

1.74

Note:

(1) Maximum I C/SPI Signal Frequency = Min (1/t ; 1/(t +t +t +t))

Promira I2C/SPI Active User Manual v1.33.003

2

OPD IPD

COPD CIPD

2
SCK OPD IPD COPD CIPD

88

6.3 Signal Ratings

6.3.1 Logic High Levels

All signal levels are nominally 0.9-3.45 volts (+/- 10%) logic high. The Promira Serial Platform is also
compatible with devices with 5V I C/SPI signals level.

6.3.2 ESD protection

The Promira Serial Platform has built-in electrostatic discharge protection to prevent damage to the
unit from high voltage static electricity.

Promira I2C/SPI Active User Manual v1.33.003

2

89

7 Legal / Contact

7.1 Disclaimer

All of the software and documentation provided in this manual, is copyright Total Phase, Inc.
("Total Phase"). License is granted to the user to freely use and distribute the software and
documentation in complete and unaltered form, provided that the purpose is to use or evaluate Total
Phase products. Distribution rights do not include public posting or mirroring on Internet websites.
Only a link to the Total Phase download area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general, incidental, or
consequential damages arising from the use of its site, the software or documentation downloaded
from its site, or any derivative works thereof, even if Total Phase or distributors have been advised
of the possibility of such damage. The software, its documentation, and any derivative works is
provided on an "as-is" basis, and thus comes with absolutely no warranty, either express or implied.
This disclaimer includes, but is not limited to, implied warranties of merchantability, fitness for any
particular purpose, and non-infringement. Total Phase and distributors have no obligation to provide
maintenance, support, or updates.

Information in this document is subject to change without notice and should not be construed as a
commitment by Total Phase. While the information contained herein is believed to be accurate,
Total Phase assumes no responsibility for any errors and/or omissions that may appear in this
document.

7.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life support
devices or systems include, but are not limited to, surgical implants, medical systems, and other
safety-critical systems in which failure of a Total Phase product could cause personal injury or loss
of life. Should a Total Phase product be used in such an unauthorized manner, Buyer agrees to
indemnify and hold harmless Total Phase, its officers, employees, affiliates, and distributors from
any and all claims arising from such use, even if such claim alleges that Total Phase was negligent
in the design or manufacture of its product.

7.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have support-related
questions, please go to the Total Phase support page at http://www.totalphase.com/support/. For
sales inquiries, please contact sales@totalphase.com.

Promira I2C/SPI Active User Manual v1.33.003

90

http://www.totalphase.com/
http://www.totalphase.com/support/
mailto:sales@totalphase.com

©2003-2016 Total Phase, Inc.
All rights reserved.

Promira I2C/SPI Active User Manual v1.33.003

91

	Promira Serial Platform – I2C/SPI Active Applications
	1 Revision History
	1.1 Changes in version 1.33

	2 General Overview
	2.1 I2C Background
	2.1.1 I2C History
	2.1.2 I2C Theory of Operation
	2.1.3 I2C Features
	2.1.4 I2C Benefits and Drawbacks
	2.1.5 I2C References

	2.2 SPI Background
	2.2.1 SPI Background
	2.2.2 Single SPI interface
	2.2.3 Dual SPI interface
	2.2.4 Quad SPI interface
	2.2.5 SPI Modes
	2.2.6 SPI Clock modes
	2.2.7 SPI Benefits and Drawbacks
	2.2.8 SPI References

	3 Hardware Specifications
	3.1 Pinouts
	3.1.1 Connector Specification
	3.1.2 Orientation
	3.1.3 Pin Description

	3.2 I2C Signaling Characteristics
	3.2.1 Speed
	3.2.2 Pull-up Resistors
	3.2.3 I2C Clock Stretching
	3.2.4 Known I2C Limitations

	3.3 SPI Signaling Characteristics
	3.3.1 Speeds
	3.3.2 Pin Driving
	3.3.3 Known SPI Limitations

	4 Software
	4.1 Rosetta Language Bindings: API Integration into Custom Applications
	4.1.1 Overview
	4.1.2 Aardvark Compatibility
	4.1.3 Versioning
	4.1.4 Customizations

	5 API Documentation
	5.1 Introduction
	5.2 General Data Types
	5.3 Notes on Status Codes
	5.4 Application Management Interface
	5.5 General Application Interface
	5.5.1 General Application
	Overview
	Connect to the Application (ps_app_connect)
	Disconnect to the Application (ps_app_disconnect)
	Version (ps_app_version)
	Sleep (ps_app_sleep_ms)
	Status String (ps_app_status_string)

	5.5.2 Channel
	Channel Overview
	Open a Channel (ps_channel_open)
	Close the Channel (ps_channel_close)
	Get the Number of Queues Submitted (ps_channel_submitted_count)
	Get the Number of Queues Uncollected (ps_channel_uncollected_count)

	5.5.3 Queue
	Queue Overview
	Create a Queue (ps_queue_create)
	Destroy the Queue (ps_queue_destroy)
	Clear the Queue (ps_queue_clear)
	Queue a Delay in Milliseconds (ps_queue_delay_ms)
	Queue a Sync Command (ps_queue_sync)
	Get a number of commands (ps_queue_size)
	Submit the Queue (ps_queue_submit)
	Submit an Asynchronous Shift (ps_queue_async_submit)
	Collect an Asynchronous Submission (ps_queue_async_collect)

	5.5.4 Collect
	Collect the Response of the Command (ps_collect_resp)

	5.5.5 Configuration
	Configure (ps_app_configure)
	Target Power (ps_phy_target_power)
	Level Shift (ps_phy_level_shift)

	5.6 I2C Interface
	5.6.1 I2C Notes
	5.6.2 General I2C
	I2C Pullups (ps_i2c_pullup)
	Free bus (ps_i2c_free_bus)
	Set Bus Lock Timeout (ps_i2c_bus_timeout)

	5.6.3 I2C Master
	Set Bitrate (ps_i2c_bitrate)
	Master Read (ps_i2c_read)
	Queue a Master Read (ps_queue_i2c_read)
	Collect a Master Read (ps_collect_i2c_read)
	Master Write (ps_i2c_write)
	Queue a Master Write (ps_queue_i2c_write)
	Collect a Master Write (ps_collect_i2c_write)

	5.6.4 I2C Slave
	Slave Enable (ps_i2c_slave_enable)
	Slave Disable (ps_i2c_slave_disable)
	Slave Set Response (ps_i2c_slave_set_resp)
	Asynchronous Polling (ps_i2c_slave_poll)
	Slave Write Statistics (ps_i2c_slave_write_stats)
	Slave Read (ps_i2c_slave_read)
	Slave Data Lost Statistics (ps_i2c_slave_data_lost_stats)

	5.7 SPI Interface
	5.7.1 SPI Notes
	5.7.2 General SPI
	Configure (ps_spi_configure)
	Configure Delays (ps_spi_configure_delays)
	Enable SS Lines (ps_spi_enable_ss)
	Enable Master Outputs (ps_queue_spi_oe)
	Queue Slave Select Signals (ps_queue_spi_ss)

	5.7.3 SPI Master
	Set Bitrate (ps_spi_bitrate)
	Queue a Delay in Cycles (ps_queue_spi_delay_cycles)
	Queue a Delay in Nanoseconds (ps_queue_spi_delay_ns)
	Queue SPI Master Write (ps_queue_spi_write)
	Queue SPI Master Write Word (ps_queue_spi_write_word)
	Queue SPI Master Read (ps_queue_spi_read)
	Collect a Master Write/Read (ps_collect_spi_read)

	5.7.4 SPI Slave
	Slave Enable (ps_spi_slave_enable)
	Slave Disable (ps_spi_slave_disable)
	Configure SPI Slave (ps_spi_std_slave_configure)
	Set SPI Slave Timeout (ps_spi_slave_timeout)
	Set SPI Slave Host Read Size (ps_spi_slave_host_read_size)
	Slave Set Response (ps_spi_std_slave_set_resp)
	Asynchronous Polling (ps_spi_slave_poll)
	Slave Read (ps_spi_slave_read)
	Slave Data Lost Statistics (ps_spi_slave_data_lost_stats)

	5.8 GPIO Interface
	5.8.1 GPIO Notes
	5.8.2 GPIO Interface
	Direction (ps_gpio_direction)
	Queue a GPIO Direction (ps_queue_gpio_direction)
	Get Available GPIOs (ps_gpio_query)
	Get (ps_gpio_get)
	Queue a GPIO Get (ps_queue_gpio_get)
	Set (ps_gpio_set)
	Queue a GPIO Set (ps_queue_gpio_set)
	Change (ps_gpio_change)
	Queue a GPIO Change (ps_queue_gpio_change)

	5.9 Error Codes

	6 Electrical Specifications
	6.1 DC Characteristics
	6.2 AC Characteristics
	6.2.1 SPI AC Characteristics
	6.2.2 I2C AC Characteristics
	6.2.3 General AC Characteristics

	6.3 Signal Ratings
	6.3.1 Logic High Levels
	6.3.2 ESD protection

	7 Legal / Contact
	7.1 Disclaimer
	7.2 Life Support Equipment Policy
	7.3 Contact Information

