
ICD16Z Debugger - User Manual 1

ICD16Z User Guide - In-Circuit Debugger for 68HC16

1 Introduction
PEmicro's ICD16Z is a powerful tool for debugging code. It uses an 68HC16 processor's
background debug mode (BDM), via one of PEmicro's hardware interfaces, to give the user
access to all on-chip resources. ICD16Z is a great tool for creating repeatable testing, calibration,
and debugging procedures.

2 Connection to Target
When you first run the software, you will see the Connection Assistant dialog box:

Figure 2-1: Connection Assistant Dialog

You may use this dialog box to connect to your target using one of PEmicro’s debugging interface
products. The dialog allows you to specify the type of PEmicro debugging interface hardware. You
may also select the CPU type, communications speed, and reset delay. If you wish, you may
disable the dialog box so that it will appear only on error.
Use the Connect button to reset the target. Use the Hotsync button to connect to the target without
resetting it.

3 Command Line Parameters
To setup ICD16Z for windows to run with certain command line parameters, highlight the ICD16Z
icon and select PROPERTIES from the Program Manager File Menu.
Syntax:

ICD16Z [option] ... [option]

ICD16Z Debugger - User Manual 2

[option] Optional parameters are as follows:
lpt1…lpt3 Chooses lpt1, lpt2, or lpt3. The software will remember the last setting

used.
pci1…pci6 Chooses which PCI card to communicate with. The software will

remember the last setting used.
pci_delay n Sets speed of PCI card shift clock, where n = 0…255. The equation

for the PCI card shift clock frequency is 33 * 10^6 / (5 + 2n).
running Starts ICD with CPU running (see RUNNING help)
io_delay_cnt n Causes the background debug mode clock to be extended by 'n'

Cycles where 1�=n�=64k. Used when using a very fast PC or a slow
CPU clock. (default = 1);

reset_delay n Causes a delay of 'n' milliseconds after the software pulses the reset
line, and before the software checks the processor status to make
sure that background mode has been entered. Used when reset
pulse on the reset line is extended, for example by using a reset
driver, which may add several hundred milliseconds to reset.

v1_reset Allows the user to toggle the part to BERR immediately after reset, to
avoid problems with BDM.

x1_reset Disables CSBOOT chip select and enables CS0 at address 0 for 64k,
words, read write, supervisor-user.

quiet Starts the ICD without filling the memory windows and the
disassembly window. Can be used for speed reasons or to avoid
DSACK errors on startup until windows are positioned or chip selects
enabled.

-or-
path A DOS path to the directory containing the source code for source

level debug or a DOS path to a source file to be loaded at startup
(path part is also saved).

Note:
If more then one option is given, they must be separated by spaces.
Examples:

ICD16Z.EXE lpt2 io_delay_cnt 2 Chooses lpt2, Causes the background debug mode clock
to be extended by 2 Cycles.

Additionally, if a file named STARTUP.ICD exists in the current directory, it will be run as a macro at
startup. See the MACRO command for more information.

4 Nomenclature
Note the following:

n Any number from 0 to 0FFFFF (hex). The default base is hex. To enter
numbers in another base use the suffixes 'T' for base ten, 'O' for base eight or
'Q' for base two. You may also use the prefixes '!' for base ten, '@' for base 8
and '%' for base two. Numbers must start with either one of these prefixes or a
numeric character. Example: 0FF = 255T = 377O = 11111111Q = !255 = @377
= �11111111

add Any valid address (default hex).

[] Optional parameter.

ICD16Z Debugger - User Manual 3

PC Program Counter points to the next instruction to be fetched (Equals IP+6).

str ASCII string.

; Everything on a command line after and including the “;” character is
considered a comment. This helps in documenting macro (script) files.

5 User Interface
This section describes the windows that comprise the ICD16Z interface.

5.1 Code Window
The Code Window displays either disassembled machine code or the user's source code if it is
available. The "Disassembly" mode will always show disassembled code regardless of whether a
source file is loaded. The "Source/Disassembly" mode will show source�code if source code is
loaded and the current PC points to a valid line withing the source code, and shows disassembly
otherwise. To show both modes at once, the user should have two code windows open and set
one to "Disassembly" and the other to "Source/Disassembly".
Code windows also give visual indications of the Program Counter (PC) and breakpoints. Each
code window is independent from the other and can be configured to show different parts of the
user's code.

Figure 5-1: Code Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the code window, the user is
given a popup menu which has the following options:
Toggle Breakpoint at Cursor
This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a breakpoint at the selected
location, or if there is already a breakpoint at the selected location, will remove it.
Set PC at Cursor
This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set the Program Counter (PC) to the
selected location.
Gotil Address at Cursor

ICD16Z Debugger - User Manual 4

This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a temporary breakpoint at the
selected line and starts processor execution (running mode). When execution stops, this
temporary breakpoint is removed.
Set Base Address
This option allows the code window to look at different locations in the user's code, or anywhere in
the memory map. The user will be prompted to enter an address or label to set the code window's
base address. This address will be shown as the top line in the Code Window. This option is
equivalent to the SHOWCODE command.
Set Base Address to PC
This option points the code window to look at the address where the program counter (PC) is. This
address will be shown as the top line in the Code Window.
Select Source Module
This option is enabled if a source�level map file is currently loaded, and the windows mode is set
to "Source/Disassembly". Selecting this option will pop up a list of all the map file's source
filenames and allows the user to select one. This file is then loaded into the code window for the
user to view.
Show Disassembly or Show Source/Disassembly
This option controls how the code window displays code to the user. The "Show Disassembly"
mode will always show disassembled code regardless of whether a source file is loaded. The
"Show Source/Disassembly" mode will show source-code if source code is loaded and the current
PC points to a valid line withing the source code, and shows disassembly otherwise.
Help
Displays this help topic.

KEYSTROKES
The following keystrokes are valid while the code window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to the Code Window's base address.
END Scroll window to last address the window will show.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS window the active window

5.2 Status Window
The Status Window serves as the command prompt for the application. It takes keyboard
commands given by the user, executes them, and returns an error or status update when needed.
Commands can be typed into the window, or a series of commands can be played from a macro
file. This allows the user to have a standard sequence of events happen the same way every time.
Refer to the MACRO command for more information.
It is often desirable to have a log of all the commands and command responses which appear in
the status window. The LOGFILE command allows the user to start/stop the recording of all
information to a text file which is displayed in the status window.

ICD16Z Debugger - User Manual 5

Figure 5-2: Status Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the status window, the user is
given a popup menu which has the following options:
Help...
Displays this help topic.

KEYSTROKES
The following keystrokes are valid while the status window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to first status line
END Scroll window to last status line
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic

To view previous commands and command responses, use the scroll bar on the right side of the
window.

5.3 CPU Window
The CPU Window displays the current state of the registers.

Figure 5-3: CPU Window

The popup window allows modification of these registers - double clicking on any of the registers
displays a pop-up window which allows the user to modify the value. Right-clicking will also bring
up a menu which allows you to modify these registers. The Condition Code Register must be
changed using the CCR command.
KEYSTROKES

ICD16Z Debugger - User Manual 6

The following keystrokes are valid while the CPU window is the active window:
F1 Shows this help topic
ESC Make the STATUS window the active window

5.4 Variables Window
The Variables Window is used to view variables while the part is not running. The user may add or
remove variables through the Insert or Delete keys, the popup menu, or the VAR command.
Variables can be viewed as bytes (8 bits), words (16 bits), longs (32 bits), or strings (ASCII).

Figure 5-4: Variables Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the variables window, the user
is given a popup menu which has the following options:
Add Variable
Adds a variable to the variables window at the currently selected line. A popup Add Variable box
allows the user to specify the variable's address or label, type, and base.
Delete Variable
Removes the selected variable from the variables window. A variable is selected by placing the
mouse cursor over the variable name and clicking the LEFT MOUSE BUTTON.
Clear All
Removes all variables from the variables window.
Help...
Shows this help topic.

KEYSTROKES
The following keystrokes aere valid while the variables window is the active window.

INSERT Add a variable
DELETE Delete a variable
UP ARROW Scroll window up one variable
DOWN ARROW Scroll window down one variable
HOME Scroll window to the first variable
END Scroll window to the last variable
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the Status Window the active window

ICD16Z Debugger - User Manual 7

5.5 Memory Window
The Memory Window is used to view and modify the memory map of a target. View bytes by using
the scrollbar on the right side of the window. In order to modify a particular set of bytes, just double
click on them. Double-clicking on bits brings up a byte modification window.

Figure 5-5: Memory Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the memory window, the user is
given a popup menu which has the following options:
Set Base Address
Sets the memory window scrollbar to show whatever address the user specifies. Upon selecting
this option, the user is prompted for the address or label to display. This option is equivalent to the
Memory Display (MD) Command.
Show Memory and ASCII
Sets the current memory window display mode to display the memory in both HEX and ASCII
formats.
Show Memory Only
Sets the current memory window display mode to display the memory in HEX format only.
Help...
Shows this help topic.

KEYSTROKES
The following keystrokes are valid while the memory window is the active window:
UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to address $0000
END Scroll window to last address in the memory map.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS WINDOW the active window

5.6 Colors Window
The Colors Window shows the colors that are set for all of the debugger windows. In order to view
the current color in a window, select the item of interest in the listbox and view the text in the
bottom of the window. To change the color in a window, select the item and then use the left
mouse button to select a color for the foreground or use the right mouse button to select a color for
the background. Some items will only allow the foreground or background to be changed. Press
the OK button to accept the color changes. Press the Cancel button to decline all changes.

ICD16Z Debugger - User Manual 8

Figure 5-6: Colors Window

6 Command Recall
You can use the PgUp and PgDn keys to scroll through the past 30 commands issued in the
debug window. Saved commands are those typed in by the user, or those entered through macro
(script) files. You may use the ESC key to delete a currently entered line including one selected by
scrolling through old commands.
Note that only "command lines" entered by the user are saved. Responses to other ICD prompts
are not. For example, when a memory modify command is given with just an address, the ICD
prompts you for data to be written in memory. These user responses are not saved for scrolling,
however, the original memory modify command is saved.

7 ICD16Z Commands

7.1 A - Set Accumulator A
The A command sets the A accumulator to a specified value.
Syntax:

A <n>
Where:

<n> The value to be loaded into the accumulator.
Example:

>A $10 Set the accumulator to $10.

7.2 AMH Command
The AMH command allows the user to set the value of the 20-bit MAC Accumulator MSB (AM
high). Same as MH or MMS commands.
Syntax:

 AMH <n>

Where:
<n> Value to assign to accumulator.

Example:
AMH 4DC42 Assigns 4DC42 to accumulator.

ICD16Z Debugger - User Manual 9

7.3 AML Command
The AML command allows the user to set the value of the 16-bit MAC Accumulator LSB (AM low).
Same as ML or MLS commands.
Syntax:

 AML <n>
Where:

<n> Value to assign to accumulator.
Example:

AML D726 Assigns D726 to accumulator.

7.4 ASCIIF3 and ASCIIF6
Toggles the memory windows between displaying [data only] // [data and ASCII characters].
ASCIIF3 toggles memory window 1.
ASCIIF6 toggles memory window 2.
Syntax:

ASCIIF3
Example:

>ASCIIF3 Toggles memory window 1 between displaying [data only] // [data and ASCII
characters].

7.5 ASM - Assemble Instructions
The ASM command assembles instruction mnemonics and places the resulting machine code into
memory at the specified address. The command displays a window with the specified address (if
given) and current instruction, and prompts for a new instruction. If an instruction is entered and
the ENTER button is pressed, the command assembles the instruction, stores and displays the
resulting machine code, then moves to the next memory location, with a prompt for another
instruction. If there is an error in the instruction format, the address will stay at the current address
and an 'assembly error' flag will show. To exit assembly, press the EXIT button. See Instruction Set
for related information on instruction formats.
Syntax:

ASM [<address>]
Where:

<address> Address where machine code is to be generated. If you do not specify an
<address> value, the system checks the address used by the previous ASM
command, then uses the next address for this ASM command.

Examples:
With an address argument:

>ASM 100
The following window appears:

ICD16Z Debugger - User Manual 10

Figure 7-1: Assembly Window

The user can type a new instruction in the edit box next to the 'New Instruction' text. In this
example, the instruction 'LDA #55' is typed and then the ENTER button is pressed. As soon as
ENTER is click the following window will appears

Figure 7-2: Assembly Window

This window shows that address is incremented by 2 and the instruction at address is CLRX. You
can either enter another instruction or click EXIT to get out of this window.

7.6 B - Set Accumulator B
The B command sets the B accumulator to a specified value.
Syntax:

B <n>
Where:

<n> The value to be loaded into the accumulator.
Example:

>B $10 Set the accumulator to $10.

7.7 BELL - Sound Bell
The BELL command sounds the computer bell the specified hexadecimal number of times. The
bell sounds once when no argument is entered. To turn off the bell as it is sounding, press any key.
Syntax:

BELL [<n>]
Where:

<n> The number of times to sound the bell.
Example:

>BELL 3 Ring PC bell 3 times.

ICD16Z Debugger - User Manual 11

7.8 BGND_TIME
First, the processor execution is started at the current PC. Then, each time a BGND instruction is
encountered, the time since the last BGND instruction is logged in memory. Up to n points (default
= 500 and max = 500 data points) may be logged. The accuracy is somewhere in the microsecond
range. There is some positive time error to get in and out of background mode. In addition, while
the ICD software is storing the information, the target processor is not running which introduces a
real time error. One can determine the amount of time spent by the ICD to go into and out of BGND
mode by timing the execution of a string of BGND instructions and deducting this from the times
given. The data logging stops when 500 points have been logged or the operator presses a key.
The logged points are then written to the debug window and also to the capture file if enabled.
Syntax:

BGND_TIME [n]
Where:

n number of points logged
Example:

>BGND_TIME 4
The above command will give you four time differences (t1,t2,t3,t3).

 PC--------->BGND1----------->BGND2------------------------>BGND3------------------------->BGND3
 <-----t1------><---------t2-----------><------------t3----------------><---------------t4----------------->

7.9 BLOCK FILL or BF
The BF or FILL command fills a block of memory with a specified byte, word or long. The optional
variant specifies whether to fill the block in bytes (.B, the default), in words (.W) or in longs (.L).
Word and long must have even addresses.
Syntax:

BF[.B | .W | .L] <startrange> <endrange> <n>
FILL[.B | .W | .L] <startrange> <endrange> <n>

Where:
<startrange> Beginning address of the memory block (range).
<endrange> Ending address of the memory block (range).
<n> Byte or word value to be stored in the specified block.

The variant can either be .B, .W, .L, where:
.B Each byte of the block receives the value.
.W Each word of the block receives the value.
.L Each word of the block receives the value.

Examples:
>BF C0 CF FF Store hex value FF in bytes at addresses C0-CF.
>FILL C0 CF FF Store hex value FF in bytes at addresses C0-CF
>BF.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>FILL.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>BF.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>FILL.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>BF.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-

2000
>FILL.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-

2000

ICD16Z Debugger - User Manual 12

7.10 BR Command
Sets or clears a breakpoint at the indicated address. Break happens if an attempt is made to
execute code from the given address. There are at most 7 breakpoints. They cannot be set at an
odd address. Typing BR by itself will show all the breakpoints that are set and the current values
for n.
Syntax:

BR [add] [n]
Where:

dd Address at which a break point will be set.
n If [n] is specified, the break will not occur unless that location has been

executed n times. After the break occurs, n will be reset to its initial value. The
default for n is 1.

Examples:
>BR ; Shows all the breakpoints that are set and the current values for n.
>BR 100 ; Set break point at hex address 100.
>BR 200 5 ; Break will not occur unless hex location 200 has been executed 5 times.

7.11 C - Set/Clear C-Bit
The C command sets or clears (that is, assigns 0 or 1 to) the C bit in the condition code register
(CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

C 0|1
Examples:

>C 0 Clear the C bit of the CCR.
>C 1 Set the C bit of the CCR.

7.12 CAPTURE
Opens a capture file named 'filename'. Most outputs to the debug window are also sent to the
capture file. The user is prompted for information as to appending to or deleting the 'filename' file if
it already exists.
Syntax:

CAPTURE <filename>
Where:

<filename> Name of the file where commands and messages are stored.
Example:

>CAPTURE testfile Capture all the command and messages displayed at the debug
window into the file "TESTFILE.CAP".

ICD16Z Debugger - User Manual 13

7.13 CAPTUREOFF
Turns off capturing of commands and messages at the debug window and closes the current
capture file.
Syntax:

CAPTUREOFF
Example:

>CAPTUREOFF Turns off capturing of commands and messages at the debug and
window closes the current capture file.

7.14 CCR - Set Condition Code Register
The CCR command sets the condition code register (CCR) to the specified hexadecimal value.
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

CCR <n>
Where:

<n>The new hexadecimal value for the CCR.
Example:

>CCR $C4 Assign the value C4 to the CCR. This makes the the binary pattern 11000100;
the S, X and N bits set, other bits clear.

7.15 CLEARMAP - Clear Map File
The CLEARMAP command removes the current MAP file from memory. This will force the
debugger to show disassembly in the code windows instead of user source code. The user defined
symbols, defined with the SYMBOL command, will not be affected by this command. (The NOMAP
command is identical to CLEARMAP.)
Syntax:

CLEARMAP
Example:

>CLEARMAP Clears symbol and source information.

7.16 CLEARSYMBOL - Clear User Symbols
The CLEARSYMBOL command removes all the user defined symbols. The user defined symbols
are all created with the SYMBOL command. The debug information from MAP files, used for
source level debugging, will be unaffected. The NOSYMBOL command is identical.
Note:
Current user defined symbols can be listed with the SYMBOL command.
Syntax:

CLEARSYMBOL
Example:

>CLEARSYMBOL Clears user defined symbols.

ICD16Z Debugger - User Manual 14

7.17 CLEARVAR
The CLEARVAR command removes all the variables from the variables window.
Syntax:

CLEARVAR
Example:

CLEARVAR Removes all the variables fmor the variables window.

7.18 CODE
Shows disassembled code in the code window starting at address add. If you specify an address in
the middle of an intended instruction, improper results may occur.
Syntax:

CODE <add>
Where:

<add> Address where your code begins.
Example:

>CODE 100 Shows the disassembled code in the code window starting at hex address
100.

7.19 COLORS - Set Colors of Simulator
The COLORS command brings up a popup window, the Colors Window, that allows the user to
choose the text and background colors for all windows in the debugger. Once colors are selected
for the windows, use the SAVEDESK command to save them for all further debugging sessions.
See Colors Window for more information.
Syntax:

COLORS
Example:

>COLORS Open the colors window.

7.20 COUNT
The COUNT command tells the user how many times each address in the internal counter table is
executed. If no address parameters are provided, the processor will execute from the current
Program Counter until an existing breakpoint is encountered, or the user presses a key. If the user
provides a starting address [add1], the processor will begin executing from this address until it
reaches the second address [add2], or if that parameter is not given, until an existing breakpoint is
encountered, or the user presses a key. When a breakpoint or keypress occurs, you are put into
the "Show Count" window. The count locations set in the source code window are shown in
descending order of executions. The percent is a rough percent of all counts. You may scroll in this
window using the cursor keys and return to the debug window by hitting F1.
The addresses in the internal counter table are set using the COUNTER command.
Syntax:

COUNT [add1] [add2]
Where:

add1 Go from first address.
add2 Set breakpoint at second address.

Example:
>COUNT 100 200 Start execution of the program at address 100 and stops at address

200.

ICD16Z Debugger - User Manual 15

7.21 COUNTER
Adds or subtracts a location from the internal counter table. The user may then use the COUNT
command to count how many times each of the locations in the table executes. Using the
COUNTER command with no address shows the current table of counters.
Syntax:

COUNTER [add]
Where:

add Address to be added to, or removed from, the internal counter table.
Example:

>COUNTER 100 Add (or remove) a counter at hex location 100.
>COUNTER Shows all the current internal counters.

7.22 D - Set Double Accumulator D
The D command sets the D double accumulator to a specified value.
Syntax:

D <n>
Where:

<n> The value to be loaded into the accumulator.
Example:

>D $10 Set the accumulator to $10.

7.23 D_UPLOAD_SREC
The D_UPLOAD_SREC command uploads the content of the specified data memory block
(range), in .S19 object file format, displaying the contents in the status window. If a log file is
opened, then D_UPLOAD_SREC will put the information into it as well.
Note:
If the D_UPLOAD_SREC command is entered, sometimes the memory contents scroll through the
debug window too rapidly to view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the status window.
Syntax:

D_UPLOAD_SREC <startrange> <endrange>
Where:

<startrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range)

Example:
>D_UPLOAD_SREC 300 7FF Upload the 300�7FF memory block in .S19 format.

7.24 DASM - Disassemble Memory
The DASM command disassembles machine instructions, displaying the addresses and their
contents as disassembled instructions in the status window. The memory locations between the
first and second addresses (add) are uploaded to the screen in the form of Bytes, Words, or
Longwords. The first address must be on an even boundary for Words or Longwords. If the capture
feature is active, the lines of dumped data are also sent to the capture file. Data is read as Bytes,
Words, or Longwords from the data space.

• If the command includes an address value, one disassembled instruction is shown,
beginning at that address.

ICD16Z Debugger - User Manual 16

• If the command is entered without any parameter values, the software finds the most
recently disassembled instruction then shows the next instruction, disassembled.

• If the command includes startrange and endrange values, the software shows
disassembled instructions for the range.

Note:
If the DASM command is entered with a range, sometimes the disassembled instructions scroll
through the status window too rapidly to view. Accordingly, the LF command can be entered, which
records the disassembled instructions into a logfile, or use the scroll bars in the status window.
Syntax:

DASM <address1> [<address2>] [n]
Where:

<address1> The starting address for disassembly. <address1> must be an instruction
opcode. If you enter only an <address1> value, the system disassembles
three instructions.

<address2> The ending address for disassembly (optional). If you enter an <address2>
value, disassembly begins at <address1> and continues through <address2>.
The screen scrolls upward as addresses and their contents are displayed,
leaving the last instructions in the range displayed in the window.

n The optional parameter n determines the number of Bytes, Words, or
Longwords which are written on one line.

Examples:
>DASM 300
0300 A6E8 LDA #0E8
0302 B700 STA PORTA
0304 A6FE LDA #FE

>DASM 400 408
0400 5F CLRX
0401 A680 LDA #80
0403 B700 STA PORTA
0405 A6FE LDA #FE
0407 B704 STA DDRA

7.25 DMM[.X] Command
The DMM[.X] command sets the data RAM location at the address given to the value given. If no
value is specified, the user is prompted for one. Consecutive locations will be prompted for until an
invalid number is input. Multiple values (separated by spaces) for consecutive addresses (based
on the .X parameter) may be entered on a single line. The .W extension causes the input to be
interpreted as words (16 bits), .L as long words (32 bits) and .B (the default) as bytes. See PMM
for program memory modify.
Syntax:

DMM[.X] add [n]
Where:

.X Units in which RAM is written. .B for bytes, .W for words, .L for long words

ICD16Z Debugger - User Manual 17

add Starting RAM address to which values are written.

n Data to write. Listing more than one value causes each value to be written to
consecutive addresses.

Example:
DMM 200 1 2 3 4 Writes values 1-4 into RAM locations $200-$203

DMM 300 Will prompt for values to be written, starting at address $300...
300 = 32 > Enter new value for RAM location $300, or nonsense character to

quit.

7.26 DUMP - Dump Data Memory to Screen
The DUMP command sends contents of a block of data memory to the status window, in bytes,
words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the default), in
words (.W), or in longs (.L).
Note:
When the DUMP command is entered, sometimes the memory contents scroll through the debug
window too rapidly to view. Accordingly, either the LF command can be entered, which records the
memory locations into a logfile, or the scroll bars in the status window can be used.
Syntax:

DUMP [.B | .W | .L] <startrange> <endrange> [<n>]
Where:

<startrange> Beginning address of the data memory block.
<endrange> Ending address of the data memory block (range).
<n> Optional number of bytes, words, or longs to be written on one line.

Examples:
>DUMP C0 CF Dump array of RAM data memory values, in bytes.
>DUMP.W 400 47F Dump ROM code from data memory hex addresses 400 to 47F in

words.
>DUMP.B 300 400 8 Dump contents of data memory hex addresses 300 to 400 in rows of

eight bytes.

7.27 DUMP_TRACE
Dumps the current trace buffer to the debug window and to the capture file if enabled.
Syntax:

Dump_Trace
Example:

>Dump_Trace

7.28 E - Set Accumulator E
The E command sets the E accumulator to a specified value.
Syntax:

E <n>
Where:

<n> The value to be loaded into the accumulator.
Example:

ICD16Z Debugger - User Manual 18

>E $10 Set the accumulator to $10.

7.29 EK - Set EK Extension Register
The EK command allows the user to set the value of the EK Extension Register.
Syntax:

EK n
Where:

n = value from 0-F
Example:

EK 8 Sets value of EK Register to 8.

7.30 EVAL - Evaluate Expression
The EVAL command evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats. In an expression, spaces must separate the
operator from the numerical terms.
Note that octal numbers are not valid as parameter values. Operand values must be 16 bits or
less. If the value is an ASCII character, this command also shows the ASCII character as well. The
parameters for the command can be either just a number or a sequence of : number, space,
operator, space, and number. Supported operations are addition (+), subtraction (�), multiplication
(�), division (�), logical AND (&), and logical OR (^).
Syntax:

EVAL <n> [<op> <n>]
Where:

<n> Alone, the numerical term to be evaluated. Otherwise either numerical term of
a simple expression.

<op> The arithmetic operator (+, -, *, /, &, or ^) of a simple expression to be
evaluated.

Examples:
>EVAL 45 + 32
004DH 077T 000115O 0000000001001101Q "w"

>EVAL 100T
0064H 100T 000144O 0000000001100100Q "d"

7.31 EXIT or QUIT - Exit Program
The EXIT command terminates the software and closes all windows. If the debugger is called from
WINIDE it will return there. The QUIT command is identical to EXIT.
Syntax:

EXIT
Example:

>EXIT Finish working with the program.

7.32 G or GO or RUN - Begin Program Execution
The G or GO or RUN command starts execution of code in the Debugger at the current Program
Counter (PC) address, or at an optional specified address. When only one address is entered, that
address is the starting address. When a second address is entered, execution stops at that
address. The G or GO or RUN commands are identical. When only one address is specified,

ICD16Z Debugger - User Manual 19

execution continues until a key or mouse is pressed, a breakpoint set with a BR command occurs,
or an error occurs.
Syntax:

GO [<startaddr> [<endaddr>]]
Where:

<startaddr> Optional execution starting address. If the command does not have a
<startaddr> value, execution begins at the current PC value.

<endaddr> Optional execution ending address.
Examples:

>GO Begin code execution at the current PC value.
>GO 346 Begin code execution at hex address 346.
>G 400 471 Begin code execution at hex address 400. End code execution just before the

instruction at hex address 471.
>RUN 400 Begin code execution at hex address 400.

7.33 GOEXIT
Similar to GO command except that the target is left running without any breakpoints and the
debugger software is terminated.
Syntax:

GOEXIT [add]
Where:

add Starting address of your code.
Example:

>GOEXIT 100 This will set the program counter to hex location 100, run the program
and exit from the background debugging mode.

7.34 GONEXT
Go from the current PC until the next instruction is reached. Used to execute past a subroutine call
or past intervening interrupts.
Syntax:

GONEXT
Example:

>GONEXT Goes from the current PC until the next instruction is reached.

7.35 GOTIL - Execute Program until Address
The GOTIL command executes the program in the Debugger beginning at the address in the
Program Counter (PC). Execution continues until the program counter contains the specified
ending address or until a key or mouse is pressed, a breakpoint set with a BR command occurs, or
an error occurs.
Syntax:

GOTIL <endaddr>
Where:

<endaddr> The address at which execution stops.
Example:

>GOTIL 3F0 Executes the program in the Debugger up to hex address 3F0.

ICD16Z Debugger - User Manual 20

7.36 GOTILROM
Executes fast single steps without updating the screen, until the address is reached. This is the
fastest way to breakpoint in ROM.
Syntax:

GOTILROM [add]
Where:

 add Starting address of your code.
Example:

>GOTILROM 1000 This will do fast single steps from the location where your program
counter is set at and stops at hex location 1000 which in this example
is the starting location of the ROM. Starting location of the ROM
depends on the memory map of your system. After reaching hex 1000
you can do single step to debug the code.

7.37 H - Set/Clear H-Bit
The H command sets or clears (that is, assigns 0 or 1 to) the H bit in the condition code register
(CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

H 0|1
Examples:

>H 0 Clear the H bit of the CCR.
>H 1 Set the H bit of the CCR.

7.38 HELP - Open Help File
The HELP command opens the Windows help file for the program. If this command is entered with
an optional parameter, help information specifically for that parameter appears. If this command is
entered without any parameter value, the main contents for the help file appears.
An alternative way to open the help system is to press the F1 key.
Syntax:

HELP [<topic>]
Where:

<topic> a debug command or assembly instruction
Examples:

>HELP Open the help system
>HELP GO Open GO command help information.

7.39 HR - Set MAC Register H
The HR command sets the MAC register H to a specified value. The HREG command is identical
to the HR command.

ICD16Z Debugger - User Manual 21

Syntax:
HR <value>

Where:
<value> The new value for the HR register.

Example:
>HR $05F3 Set the index register value to 05F3.
>HREG $3CC0 Set the index register value to 3CC0.

7.40 INFO - Display Line Information
The INFO command displays information about the line that is highlighted in the source window.
Information displayed includes the name of the file being displayed in the window, the line number,
the address, the corresponding object code, and the disassembled instruction.
Syntax:

INFO
Example:

>INFO Display information about the cursor line.
Shows:

Filename: PODTEST.ASMLine number:6
Address: $0100
Disassembly: START 5F CLRX

7.41 IP - Interrupt Priority Field
The IP command allows the user to assign a value from 0 to 7 to the Interrupt Priority Field in the
condition code register (CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

IP <n>
Where:

<n> A value from 0 - 7
Examples:

>IP 6 Assigns 6 to the IP Field.

7.42 IR - Set MAC Register I
The IR command sets the MAC register I to a specified value. The IREG command is identical to
the IR command.
Syntax:

IR <value>
Where:

<value> The new value for the IR register.

ICD16Z Debugger - User Manual 22

Example:
>IR $05F3 Set the index register value to 05F3.
>IREG $3CC0 Set the index register value to 3CC0.

7.43 IX - Set X Index Register
The IX command sets the index register (X) to a specified value. The IX command is identical to
the X command.
Syntax:

IX <value>
Where:

<value> The new value for the X register.
Example:

>IX $25 Set the index register value to 25.
>X $F0 Set the index register value to F0.

7.44 IY - Set Y Index Register
The IY command sets the index register (Y) to a specified value. The IY command is identical to
the Y command.
Syntax:

IY <value>
Where:

<value> The new value for the Y register.
Example:

>IY $05 Set the index register value to 05.
>Y $F0 Set the index register value to F0.

7.45 IZ - Set Z Index Register
The IZ command sets the index register (Z) to a specified value.
Syntax:

IZ <value>
Where:

<value> The new value for the Z register.
Example:

>IZ $05 Set the index register value hex to 05.

7.46 K - Set Address Extension Registers
The K command allows the user to set the value of the EK, XK, YK and ZK Extension Registers.
Syntax:

K <n1><n2><n3><n4>
Where:

<n1> = value from 0-F
<n2> = value from 0-F
<n3> = value from 0-F
<n4> = value from 0-F

Example:

ICD16Z Debugger - User Manual 23

K $4D0A Sets value of EK to 4, XK to D, YK to 0, and ZK to A.

7.47 LF or LOGFILE - Open / Close Log File
The LF command opens an external file to receive log entries of commands and copies of
responses in the status window. If the specified file does not exist, this command creates the file.
The LOGFILE command is identical to LF.
If the file already exists, an optional parameter can be used to specify whether to overwrite existing
contents (R, the default) or to append the log entries (A). If this parameter is omitted, a prompt
asks for this overwrite/append choice.
While logging remains in effect, any line that is appended to the command log window is also
written to the log file. Logging continues until another LOGFILE or LF command is entered without
any parameter values. This second command disables logging and closes the log file.
The command interpreter does not assume a filename extension.
Syntax:

LF [<filename> [<R | A>]]
Where:

<filename> The filename of the log file (or logging device to which the log is written).
Examples:

>LF TEST.LOG R Start logging. Overwrite file TEST.LOG (in the current directory) with
all lines that appear in the status window.

>LF TEMP.LOG A Start logging. Append to file TEMP.LOG (in the current directory) all
lines that appear in the status window.

>LOGFILE (If logging is enabled): Disable logging and close the log file.

7.48 LISTON - Show Info during Steps
The LISTON command turns on the screen listing of the step by step information during stepping.
The register values and program instructions will be displayed in the status window while running
the code. The values shown are the same values seen by the REG instruction.
To turn off this step display, use the LISTOFF command.
Syntax:

LISTON
Example:

>LISTON Show step information.

7.49 LISTOFF - Do Not Show Info During Steps
The LISTOFF command turns off the screen listing of the step-by-step information for stepping.
Register values and program instructions do not appear in the status window as code runs. (This
display state is the default when the software is first started.)
To turn on the display of stepping information, use the LISTON command.
Syntax:

LISTOFF
Example:

>LISTOFF Do not show step information.

7.50 LOAD - Load S19 and MAP
The LOAD command loads a file in .S19 format into the Debugger. Entering this command without
a filename value brings up a list of .S19 files in the current directory. You can select a file to be
loaded directly from this list.

ICD16Z Debugger - User Manual 24

Syntax:
LOAD [<filename>]

Where:
<filename> The name of the .S19 file to be loaded. You can omit the .S19 extension. The

filename value can be a pathname that includes an asterisk (*) wildcard
character. If so, the command displays a window that lists the files in the
specified directory, having the .S19 extension.

Examples:
>LOAD PROG1.S19 Load file PROG1.S19 and its map file into the Debugger at the load

addresses in the file.
>LOAD PROG2 Load file PROG2.S19 and its map file into the Debugger at the load

addresses in the file.
>LOAD A: Display the names of the .S19 files on the diskette in drive A:, for user

selection.
>LOAD Display the names of the .S19 files in the current directory, for user

selection.

7.51 LOADALL
Does a LOAD and a LOADMAP command.
Syntax:

LOADALL [filename]
Where:

filename Filename of your source code
Example:

LOADALL myprog This command will load the S19 object file and the PEmicro Map file.

7.52 LOADDESK - Load Desktop Settings
The LOADDESK command loads the desktop settings that set the window positions, size, and
visibility. This allows the user to set how the windows are set up for the application. Use
SAVEDESK to save the settings of the windows of the debugger into the desktop file.
Syntax:

LOADDESK
Example:

>LOADDESK Get window settings from desktop file.

7.53 LOADMAP - Load Map File
The LOADMAP command loads a map file that contains source level debug information into the
debugger. Entering this command without a filename parameter brings up a list of .MAP files in the
current directory. From this a file can be selected directly for loading map file information.
Syntax:

LOADMAP [<filename>]
Where:

<filename> The name of a map file to be loaded. The .MAP extension can be omitted. The
filename value can be a pathname that includes an asterisk (�) wildcard
character� If so, the command displays a lists of all files in the specified
directory that have the .MAP extension.

Examples:
>LOADMAP PROG.MAP Load map file PROG.MAP into the host computer.

ICD16Z Debugger - User Manual 25

>LOADMAP PROG1 Load map file PROG1.MAP into the host computer.
>LOADMAP A: Displays the names of the .MAP files on the diskette in drive A:
>LOADMAP Display the names of the .MAP files in the current directory.

7.54 LOADV
First performs the LOAD command and then automatically does a VERIFY command with the
same file.
Syntax:

LOADV [filename]
Where:

filename Filename of your source code
Example:

LOADV myprogThis command will load the S19 on to the target and then it will read the
contents of the S19 file from the target board and compare it with the 'myprog'
file.

7.55 LOAD_BIN
Loads a binary file of bytes starting at address add. The default filename extension is .BIN.
Syntax:

LOAD_BIN [filename] [add]
Where:

filename Name of the binary file
add Starting address

Example:
>LOAD_BIN myfile.bin 100Loads a binary myfile of bytes starting at hex address 100

7.56 LOADV_BIN
First performs the LOAD_BIN command and then does a verify using the same file.
Syntax:

LOADV_BIN [filename] [add]
Where:

filename Name of the binary file
add Starting address

Example:
>LOADV_BIN myfile.bin 100 Loads a binary myfile of bytes starting at hex address 100 and

then does a verify using the same file.

7.57 MAC Command
The MAC command shows the contents of the MAC (Multiply and ACcumulate) unit, which
includes the IR and HR registers, AM accumulator, XMASK and YMASK mask registers, and the
SIGNLATCH.
Syntax:

MAC
Example:

>MAC Shows the contents of the MAC unit.

ICD16Z Debugger - User Manual 26

7.58 MACS
Brings up a window with a list of macros. These are files with the extension .ICD (such as the
STARTUP.ICD macro). Use the arrow keys and the <ENTER> key or mouse click to select. cancel
with the <ESC> key.
Syntax:

MACS
Example:

>MACS Brings up a list of MACROS

7.59 MACRO or SCRIPT - Execute a Batch File
The MACRO command executes a macro file, a file that contains a sequence of debug
commands. Executing the macro file has the same effect as executing the individual commands,
one after another. Entering this command without a filename value brings up a list of macro (.MAC)
files in the current directory. A file can be selected for execution directly from this list. The SCRIPT
command is identical.
Note:
A macro file can contain the MACRO command; in this way, macro files can be nested as many as
16 levels deep. Also note that the most common use of the REM and WAIT commands is within
macro files. The REM command displays comments while the macro file executes.
If a startup macro file is found in the directory, startup routines run the macro file each time the
application is started. See STARTUP for more information.
Syntax:

MACRO <filename>
Where:

<filename> The name of a macro file to be executed, with or without extension .MAC. The
filename can be a pathname that includes an asterisk(*) wildcard character. If
so, the software displays a list of macro files, for selection.

Examples:
>MACRO INIT.MAC Execute commands in file INIT.MAC.
>SCRIPT � Display names of all .MAC files (then execute the selected file).
>MACRO A:� Display names of all .MAC files in drive A (then execute the selected

file).
>MACRO Display names of all .MAC files in the current directory, then execute

the selected file.

7.60 MACROEND - Stop Saving Commands to File
The MACROEND command closes the macro file in which the software has saved debug
commands. (The MACROSTART command opened the macro file). This will stop saving debug
commands to the macro file.
Syntax:

MACROEND
Example:

>MACROEND Stop saving debug commands to the macro file, then close the file.

7.61 MACROSTART - Save Debug Commands to File
The MACROSTART command opens a macro file and saves all subsequent debug commands to
that file for later use. This file must be closed by the MACROEND command before the debugging
session is ended.

ICD16Z Debugger - User Manual 27

Syntax:
MACROSTART [<filename>]

Where:
<filename> The name of the macro file to save commands. The .MAC extension can be

omitted. The filename can be a pathname followed by the asterisk (�)
wildcard character; if so, the command displays a list of all files in the
specified directory that have the .MAC extension.

Example:
>MACROSTART TEST.MAC Save debug commands in macro file TEST.MAC

7.62 MD or SHOW - Display Memory at Address
The MD command displays (in the memory window) the contents of memory locations beginning at
the specified address. The number of bytes shown depends on the size of the window and
whether ASCII values are being shown. See Memory Window for more information. If a log file is
open, this command also writes the first 16 bytes to the log file.
The MD and SHOW commands are identical.
Syntax:

MD <address>
Where:

<address> The starting memory address for display in the upper left corner of the
memory window.

Examples:
>MD 200 Display the contents of memory beginning at hex address 200.
>SHOW 100 Display the contents of memory beginning at hex address 100.

7.63 MD2 Command
The MD2 command displays the contents of 32 emulation memory locations in the second
memory window. The specified address is the first of the 32 locations. If a logfile is open, this
command also writes the first 16 values to the logfile.
Syntax:

MD2 <address>
Where:

<address> The starting memory address for display in the memory window.
Example:

>MD2 1000 Display the contents of 32 bytes of memory in the second memory window,
beginning at address 1000.

7.64 MDF3 / MDF6 or SHOWF3 / SHOWF6
Sets a memory screen to show code starting at a specified address or label.
MDF3 displays the code in memory window F3 (same as SHOWF3).
MDF6 displays the code in memory window F6 (same as SHOWF6).
Syntax:

MDF3 add
Example:

>MDF3 1000 Dislpays code beginning at address $1000 in memory window F3.

ICD16Z Debugger - User Manual 28

7.65 MM or MEM - Modify Memory
The MM command directly modifies the contents of memory beginning at the specified address.
The optional variant specifies whether to fill the block in bytes (.B, the default), in words (.W), or in
longs (.L).
If the command has only an address value, a Modify Memory window appears with the specified
address and its present value and allows entry of a new value for that address. Also, buttons can
be selected for modifying bytes (8 bit), words (16 bit), and longs (32 bit). If only that address is to
be modified, enter the new value in the edit box and press the OK button. The new value will be
placed at the location. If the user wishes to modify several locations at a time, enter the new value
in the edit box and press the >> or << or = button. The new value will be placed at the specified
address, and then the next address shown will be the current address incremented, decremented,
or the same, depending on which button is pressed. To leave the memory modify window, either
the OK or CANCEL buttons must be pressed.
If the MM command includes optional data value(s), the software assigns the value(s) to the
specified address(es) (sequentially), then the command ends. No window will appear in this case.
Syntax:

MM [.B|.W|.L] <address>[<n> ...]
Where:

<address> The address of the first memory location to be modified.
<n> The value(s) to be stored (optional).

Examples:
With only an address:

>MM 90 Start memory modify at address $90.

Figure 7-3: Modify Memory Window

With a second parameter:
>MM 400 00 Do not show window, just assign value 00 to hex address 400.
>MM.L 200 123456 Place long hex value 123456 at hex address 200.

7.66 N - Set/Clear N-Bit
The N command sets or clears (that is, assigns 0 or 1 to) the N bit in the condition code register
(CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.

ICD16Z Debugger - User Manual 29

MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

N 0|1
Examples:

>N 0 Clear the N bit of the CCR.
>N 1 Set the N bit of the CCR.

7.67 NOBR
Clears all break points.
Syntax:

NOBR
Example:

>NOBRClears all break points.

7.68 PC - Set Program Counter
The PC command assigns the specified value to the program counter (PC). As the PC always
points to the address of the next instruction to be executed , assigning a new PC value changes
the flow of code execution.
An alternative way for setting the Program Counter if source code is showing in a code window is
to position the cursor on a line of code, then press the right mouse button and select the Set PC at
Cursor menu item. This assigns the address of that line to the PC.
Syntax:

PC <address>
Where:

<address> The new PC value.
Example:

>PC $0500 Sets the PC value to 0500.

7.69 PDUMP - Dump Program Memory To Screen
The PDUMP command sends contents of a block of program memory to the status window, in
bytes, words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the
default), in words (.W), or in longs (.L).
Note:
When the PDUMP command is entered, sometimes the memory contents scroll through the debug
window too rapidly to view. Accordingly, either the LF command can be entered, which records the
memory locations into a logfile, or the scroll bars in the status window can be used.

Syntax:
PDUMP [.B | .W | .L] <startrange> <endrange> [<n>]

Where:
<startrange> Beginning address of the program memory block.
<endrange> Ending address of the program memory block (range).
<n> Optional number of bytes, words, or longs to be written on one line.

Examples:

ICD16Z Debugger - User Manual 30

>PDUMP C0 CF Dump array of RAM programming memory values, in bytes.
>PDUMP.W 400 47F Dump ROM code from program memory hex addresses 400 to

47F in words.
>PDUMP.B 300 400 8 Dump contents of program memory hex addresses 300 to 400

in rows of eight bytes.

7.70 PK - Set PC Extension Register
The PK command assigns a value to PK [3:0], the PC extension register.
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear. IP
should be written using the CCR command.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

PK n
Where:

n = 0-F
Examples:

>PK $D Sets PK to 1101 (PK[0]=1 PK[1]=1 PK[2]=0 PK[3]=1)
>PK 1101B Sets PK to 1101 (PK[0]=1 PK[1]=1 PK[2]=0 PK[3]=1)

7.71 PMM[.X] Command
The PMM[.X] command sets the program location at the address given to the value given. If no
value is specified, the user is prompted for one. Consecutive locations will be prompted for until an
invalid number is input. Multiple values (separated by spaces) for consecutive addresses (based
on the .X parameter) may be entered on a single line. The .W extension causes the input to be
interpreted as words (16 bits), .L as long words (32 bits) and .B (the default) as bytes. See DMM
for RAM memory modify.
Syntax:

PMM[.X] add [n]
Where:

.X Units in which program location is written. .B for bytes, .W for words, .L for
long words

add Starting program location address to which values are written.

n Data to write. Listing more than one value causes each value to be written to
consecutive addresses.

Example:
PMM 200 1 2 3 4Writes values 1-4 into program locations $200-$203

PMM 300 Will prompt for values to be written, starting at address $300...
300 = 32 > Enter new value for program location $300, or nonsense character to quit.

ICD16Z Debugger - User Manual 31

7.72 QUIET
Turns off (or on) refresh of memory based windows. This command can be used on the startup
command line. Default = on.
Syntax:

QUIET
Example:

>QUIET Turns off (or on) refresh of memory based windows

7.73 QUIT
Exit the program.
Syntax:

QUIT
Example:

>QUIT Exit the application

Figure 7-4: Exit Dialog

7.74 R - Use Register Files
The R command open a processor's register files (sold separately by PEmicro) and starts
interactive setup of such system registers as the I/O, timer and COP.
Entering this command opens the register files window, which initially shows a list of register files.
Selecting a file brings up a display of values and significance for each bit of the register.

Figure 7-5: Register Editor Dialog

The user can view any of the registers, modify their values, and store the results back into
Debugger memory. This is a good tool for gaining quick information on a register.

ICD16Z Debugger - User Manual 32

Figure 7-6: Register Editor Dialog

An alternate way to bring up the register files window is to press the Register button.
Syntax:

R
Example:

>R Start interactive system register setup.

7.75 REG or STATUS - Show Registers
The REG command displays the contents of the CPU registers in the status window. This is useful
for logging CPU values while running macro files. The STATUS command is identical to the REG
command.
Syntax:

REG
Example:

>REG Displays the contents of the CPU registers.

7.76 REM - Place Comment in Macro File
The REM command allows a user to display comments in a macro file. When the macro file is
executing, the comment appears in the status window. The text parameter does not need to be
enclosed in quotes.
Syntax:

REM <text>
Where:

<text> A comment to be displayed when a macro file is executing.
Example:

>REM Program executing Display message "Program executing" during macro file
execution.

7.77 RESET - Reset Emulation MCU
The RESET command simulates a reset of the MCU and sets the program counter to the contents
of the reset vector. This command does not start execution of user code.
Syntax:

RESET
Example:

>RESET Reset the MCU.

ICD16Z Debugger - User Manual 33

7.78 S - Set/Clear S-Bit
The S command sets or clears (that is, assigns 0 or 1 to) the S bit in the condition code register
(CCR). The S Control Bit disables the STOP instruction.
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

S 0|1
Examples:

>S 0 Clear the S bit of the CCR.
>S 1 Set the S bit of the CCR.

7.79 SAVEDESK - Save Desktop Settings
The SAVEDESK command saves the desktop settings for the application when it is first opened or
for use with the LOADDESK command. The settings saved are window position, size, visibility, etc.
Syntax:

SAVEDESK
Example:

>SAVEDESK Save window settings for the application.

7.80 SERIAL
Sets up parameters for serial port. This port may then be attached to the Serial Port on your target
for real-time debugging of communications software. See SERIALON command. COM1 or COM2,
baud = 9600, 4800, 2400, 1200, 600, 300, 150 or 110, parity = N, E or O, data bits = 7 or 8, stop
bits = 1 or 2. Example: SERIAL 1 9600 n 8 1
Syntax:

SERIAL (1 or 2) (baud) (parity) (data bits) (stop bits)
Where:

1 or 2 COM1 or COM2
baud Baud rate ranging from 110 to 9600
parity No, Even or Odd parity
data bits 7 or 8 data bits
stop bits 1 or 2 stop bits

Example:
>SERIAL 2 9600 E 8 2 Sets serial port to Com2 port with 9600 baud rate, even parity, 8

data bits and 2 stop bits

7.81 SERIALOFF
Turns off serial port use during GO.
Syntax:

SERIALOFF
Example:

ICD16Z Debugger - User Manual 34

>SERIALOFFTurns off serial port use during GO command

7.82 SERIALON
Turns the communication window into a dumb terminal during a GO command using the serial port
set up with the SERIAL command. To terminate the GO command from the keyboard, hit F1.
Syntax:

SERIALON
Example:

>SERIAL 2 9600 N 8 1
>SERIALON
>GO

7.83 SHOWCODE - Display Code at Address
The SHOWCODE command displays code in the code windows beginning at the specified
address, without changing the value of the program counter (PC). The code window shows either
source code or disassembly from the given address, depending on which mode is selected for the
window. This command is useful for browsing through various modules in the program. To return
to code where the PC is pointing, use the SHOWPC command.
Syntax:

SHOWCODE <address>
Where:

<address> The address or label where code is to be shown.
Example:

>SHOWCODE 200 Show code starting at hex location 200.

7.84 SHOWMAP or MAP - Show Information in Map File
The SHOWMAP command enables the user to view information from the current MAP file stored in
the memory. All symbols defined in the source code used for debugging will be listed. The
debugger defined symbols, defined with the SYMBOL command, will not be shown. (The MAP
command is identical to the SHOWMAP command.)
Syntax:

SHOWMAP
Example:

>SHOWMAP Shows symbols from the loaded map file and their values.

7.85 SHOWPC - Display Code at PC
The SHOWPC command displays code in the code window starting from the address in the
program counter (PC). The code window shows either source code or disassembly from the given
address, depending on which mode is selected for the window. This command is often useful
immediately after the SHOWCODE command.
Syntax:

SHOWPC
Example:

>SHOWPC Show code from the PC address value.

7.86 SHOWTRACE
After executing the TRACE command, which monitors the execution of the CPU and logs the

ICD16Z Debugger - User Manual 35

address of (up to) the last 256 instructions that have been executed into an internal array, the
SHOWTRACE command (or F7) allows the user to view this trace buffer.
Syntax:

SHOWTRACE
Example:

>SHOWTRACE Displays the trace buffer logged during a previously executed TRACE
command.

7.87 SIGNLATCH Command
The SIGNLATCH command sets the value (0 or 1) of the sign latch.
Syntax:

SIGNLATCH n
Where:

n = 0 or 1
Example:

>SIGNLATCH 1 Sets the sign latch to 1.

7.88 SK - Set Stack Extension Register
The SK command assigns a value to SK [3:0], the Stack Extension Register.
Syntax:

SK n
Where:

n = 0-F
Examples:

>SK $D Sets SK to 1101 (SK[0]=1 SK[1]=1 SK[2]=0 SK[3]=1)
>SK 1101B Sets SK to 1101 (SK[0]=1 SK[1]=1 SK[2]=0 SK[3]=1)

7.89 SNAPSHOT
Takes a snapshot (black and white) of the current screen and sends it to the capture file if one
exists. Can be used for test documentation and system testing.
Syntax:
SNAPSHOT
Example:

>LOGFILE SNAPSHOT This command will open a file by the name SNAPSHOT.LOG and
stores all the command at the status window.

>SNAPSHOT This command will take a snapshort of all the open windows of ICD
and store it in SNAPSHOT.LOG file.

>LF This command will close SNAPSHOT.LOG file
Now you can open the SNAPSHOT.LOG file with any text editor, such as EDIT.

7.90 SOURCE
If a valid map file has been loaded, the SOURCE command will toggle between showing actual
source code and disassembled code.
Syntax:

 SOURCE
Example:

ICD16Z Debugger - User Manual 36

>SOURCE Toggles between source code and disassembled code in debug window.

7.91 SOURCEPATH
Either uses the specified filename or prompts the user for the path to search for source code that is
not present in the current directory.
Syntax:

SOURCEPATH filename
Where:

filename Name of the source file
Example:

>SOURCEPATH d:\mysource\myfile.asm

7.92 SP - Set Stack Pointer
The SP command sets the Stack Pointer to a specified value
Syntax:

SP <n>
Where:

<n> The value to be loaded into the Stack Pointer.
Example:

>SP $FF Set the Stack Pointer to hex FF.

7.93 SS
Does one step of source level code. Source must be showing in the code window.
Syntax:

SS
Example:

>SS Does one step of source level code.

7.94 ST or STEP or T - Single Step
The ST or STEP or T command steps through one or a specified number of assembly instructions,
beginning at the current Program Counter (PC) address value, and then halts. When the number
argument is omitted, one instruction is executed. If you enter the ST command with an <n> value,
the command steps through that many instructions.
Syntax:

STEP <n>
or

ST <n>
or

T <n>
Where:

<n> The hexadecimal number of instructions to be executed by each command.
Example:

>STEP Execute the assembly instruction at the PC address value.
>ST 2 Execute two assembly instructions, starting at the PC address value.

ICD16Z Debugger - User Manual 37

7.95 STEPFOR - Step Forever
STEPFOR command continuously executes instructions, one at a time, beginning at the current
Program Counter address until an error condition occurs, a breakpoint occurs, or a key or mouse is
pressed. All windows are refreshed as each instruction is executed.
Syntax:

STEPFOR
Example:

>STEPFOR Step through instructions continuously.

7.96 STEPTIL - Single Step to Address
The STEPTIL command continuously steps through instructions beginning at the current Program
Counter (PC) address until the PC value reaches the specified address. Execution also stops if a
key or mouse is pressed, a breakpoint set with a BR command occurs, or an error occurs.
Syntax:

STEPTIL <address>
Where:

<address> Execution stop address. This must be an instruction address.
Example:

>STEPTIL 0400 Execute instructions continuously until PC hex value is 0400.

7.97 SYMBOL - Add Symbol
The SYMBOL command creates a new symbol, which can be used anywhere in the debugger, in
place of the symbol value. If this command is entered with no parameters, it will list the current
user defined symbols. If parameters are specified, the SYMBOL command will create a new
symbol.
The symbol label is case insensitive and has a maximum length of 16T. It can be used with the
ASM and MM command, and replaces all addresses in the Code Window (when displaying
disassembly) and Variables Window.
The command has the same effect as an EQU statement in the assembler.
Syntax:

SYMBOL [<label> <value>]
Where:

<label> The ASCII-character string label of the new symbol.
<value> The value of the new symbol (label).

Examples:
>SYMBOL Show the current user-defined symbols.
>SYMBOL timer_control $08 Define new symbol 'timer_control', with hex value 08.

Subsequently, to modify hex location 08, enter the command
'MM timer_control'.

7.98 TIME
Will give you an estimate of real time to execute the command from one address to another.
Set breakpoint at second address. Go from first address. If only one address given, it is the start
address. If no stop address is given, the ICD will run forever or until a breakpoint is encountered or
a key on the keyboard is hit. If no address is given the command is a "Time forever" command.
When the command ends (either a break or a key) the debug window will show the amount of real-
time that passed since the command was initiated.
Syntax:

ICD16Z Debugger - User Manual 38

TIME <[add1] [add2]>
Where:

add1 Starting address
add2 Ending address

Example:
>TIME 800 805 Will give you an estimate of real time to execute the command from

hex location 800 to hex location 805.

7.99 TRACE
The TRACE command is similar to the GO command except that execution does not occur in real-
time. The ICD software monitors the execution of the CPU and logs the address of (up to) the last
256 instructions that have been executed into an internal array .
The trace executes from the first address until the breakpoint at the second address. If only one
address given, it is the start address. If no stop address is given, the ICD will run forever or until a
breakpoint is reached or a key on the keyboard is hit. If no address is given the command is a
"Trace forever" command.
After execution, you may use the SHOWTRACE command or hit F7 to view the trace buffer.
Syntax:

TRACE <[add1] [add2]>
Where:

add1 Starting address
add2 Ending address

Example:
>TRACE 800 805 Will give you an estimate of real time to execute the command from

hex location 800 to hex location 805.

7.100 UPLOAD_SREC - Upload S-Record to Screen
The UPLOAD_SREC command uploads the content of the specified program memory block
(range), in .S19 object file format, displaying the contents in the status window. If a log file is
opened, then UPLOAD_SREC will put the information into it as well. Same as P_UPLOAD_SREC.
Note:
If the UPLOAD_SREC command is entered, sometimes the memory contents scroll through the
debug window too rapidly to view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the status window.
Syntax:

UPLOAD_SREC <startrange> <endrange>
Where:

<startrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range)

Example:
>UPLOAD_SREC 300 7FF Upload the 300�7FF memory block in .S19 format.

7.101 V - Set/Clear V-Bit
The V command sets or clears (that is, assigns 0 or 1 to) the V bit in the condition code register
(CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is

ICD16Z Debugger - User Manual 39

S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.
Syntax:

V 0|1
Examples:

>V 0 Clear the V bit of the CCR.
>V 1 Set the V bit of the CCR.

7.102 VAR - Display Variable
The VAR command displays the specified address and its contents in the Variables Window for
viewing during code execution. Variants of the command display a byte, a word, a long, or a string.
As the value at the address changes, the variables window updates the value. The maximum
number of variables is 32. You may also enter the requisite information using the Add Variable
box, which may be called up by double-clicking on the Variables Window or executing the VAR
command without a parameter.
In the ASCII displays, a control character or other non-printing character is displayed as a period
(.). The byte, word, long, or string variant determines the display format:

• Byte (.B): hexadecimal (the default)
• Word (.W): hexadecimal
• Long (.L): hexadecimal
• String (.S): ASCII characters

To change the format from the default of hexdecimal, use the Add Variable box.
The optional <n> parameter specifies the number of string characters to be displayed; the default
value is one. The <n> parameter has no effect for byte, word, or long values.
Syntax:

VAR [.B|.W|.L|.S] <address> [<n>]
Where:

<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is 1, does

not apply to byte or word variables.
Examples:

>VAR C0 Show byte value of address C0 (hex and binary)
>VAR.B D4 Show byte value of address D4 (hex and binary)
>VAR.W E0 Show word value of address E0 (hex & decimal)
>VAR.S C0 5 Show the five-character ASCII string at hex address C0.

7.103 VERIFY
Compares the contents of program memory with an S-record file. You will be prompted for the
name of the file. The comparisons will stop at the first location with a different value.
Syntax:

VERIFY
Example:

>LOADALL test.s19

ICD16Z Debugger - User Manual 40

>VERIFY As soon as you press <ENTER> key it will give you a message
"Verifying...verified"

7.104 VERSION or VER - Display Software Version
The VERSION command displays the version and date of the software. VER is an alternate form
of this command.
Syntax:

VERSION
Examples:

>VERSION Display debugger version.
>VER Display debugger version.

7.105 WATCHDOG
Disables watchdog timer (toggles the state of the SWE bit in the SYPCR). Remember that this
register may only be written once following a reset of the hardware. Reset enables the watchdog
timer.
Syntax:

WATCHDOG
Example:

>WATCHDOG

7.106 WHEREIS - Display Symbol Value
The WHEREIS command displays the value of the specified symbol. Symbol names are defined
through source code or the SYMBOL command.
Syntax:

WHEREIS <symbol> | <address>
Where:

<symbol> A symbol listed in the symbol table.
<address> Address for which a symbol is defined.

Examples:
>WHEREIS START Display the symbol START and its value.
>WHEREIS 0300 Display the hex value 0300 and its symbol name if any.

7.107 XK - Set XK Extension Register
The XK command allows the user to set the value of the XK Extension Register.
Syntax:

XK n
Where:

n = value from 0-F
Example:

XK 6 Sets value of XK Register to 6.

7.108 XMASK
The XMASK command allows the user to assign a value to the XMSK Register in the MAC unit.
Syntax:

XMASK <n>

ICD16Z Debugger - User Manual 41

Where:
<n> Value to assign to XMSK Register.

Example:
XMASK $7C Assigns 7C to XMSK Register.

7.109 Y Command - Set Y Index Register
The Y command sets the index register (Y) to the specified value. The Y command is identical to
the YREG command.
Syntax:

Y <value>
Where:

<value> The new value for the Y register.
Example:

>Y 05 Set the index register value hex to 05.
>YREG F0 Set the index register value hex to F0.

7.110 Y MASK
The YMASK command allows the user to assign a value to the YMSK Register in the MAC unit.
Syntax:

YMASK <n>
Where:

<n> Value to assign to YMSK Register.
Example:

YMASK $54 Assigns 54 to YMSK Register.

7.111 YK - Set YK Extension Register
The YK command allows the user to set the value of the YK Extension Register.
Syntax:

YK n
Where:

n = value from 0-F
Example:

YK $C Sets value of YK Register to $C.

7.112 Z - Set/Clear Z-Bit
The Z command sets or clears (that is, assigns 0 or 1 to) the Z bit in the condition code register
(CCR).
Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
S,MV,H,EV,N,Z,V,C,IP,SM,PK. S is STOP control, MV is an overflow flag, H is half-carry, EV is an
overflow flag, N is negative, Z is zero, V is overflow, C is carry, IP is a masking interrupt, SM is
saturate mode, and PK is a program counter extension. A letter in these designators means that
the corresponding bit of the CCR is set; a period means that the corresponding bit is clear.
MV, EV, and SM cannot be set by the user, but a value should be used as a placeholder when
writing to the Condition Code Register.

ICD16Z Debugger - User Manual 42

Syntax:
Z 0|1

Examples:
>Z 0 Clear the Z bit of the CCR.
>Z 1 Set the Z bit of the CCR.

7.113 ZK - Set ZK Extension Register
The ZK command allows the user to set the value of the ZK Extension Register.
Syntax:

ZK n
Where:

n = value from 0-F
Example:

ZK 9 Sets value of ZK Register to 9.

8 CPU Values & Names
CPU Values:
Any on-screen location with an alphabetic name (SP, PC, etc.) may be changed by entering the
name of the location followed by a value and <ENTER> key; for example:

>A 44
This will change the value of accumulator A to hex value 44.

>E FF04
This will change the value of E register to hex value FF04

>PC 100
The value of Program Counter register (PC) will be changed to hex value 100

>SP 3FF
This will set the Stack Pointer register to hex value 3FF.
To change the value of the AM register, refer to either AMH (AM High) for AM bits 35-16 and AML
(AM Low) for bits 15-0.
Example:
AMH 1F321
AML F033

CPU Names:
A AMH AML B C
CCR D E EK H
HR IR IX IY IZ
K N PC PK S
SIGNLATCH SK SP V XK
XMASK YK YMASK Z ZK

9 Source Level Debugging
Once a valid map file (generated by CASM16Z) is loaded into the ICD via the LOADMAP or
LOADALL command, source level debugging is enabled. When the IP is at a location for which

ICD16Z Debugger - User Manual 43

there is source code available, the source code will be shown in the code window. The user can
set a breakpoint by using the BR command, or by clicking the appropriate line in the code window,
then clicking the right mouse button and selecting “Toggle a Breakpoint.” For more details, see the
Code Window section.

10 Errors
Various errors may appear in the DEBUG F1 window during your debugging. Most are self
explanatory. The following four errors are due to the debugger's interface with the background
mode of the CPU16.

Debugger supplied DSACK Probable memory implementation error!
Warning Not ready response from chip.
Warning BERR Terminated bus cycle - Debugger Supplied DSACK
Warning Illegal command error from chip - Debugger Supplied DSACK

All four errors are probably due to some type of memory problem involving the DSACK signal. In
most cases, the Debugger will assert DSACK to end a bus cycle that is taking much too long.

Note: The debugger rewrites the windows showing on the screen often. If a window is showing memory
that does not exist, one of these errors will occur every time the debugger tries to update that
window. This concerns the two memory windows and the code window. Additionally, reading or
writing non-existing memory areas mapped internally may cause one of these errors.

As stated, in most cases the debugger will supply DSACK and recover. If the system starts acting
erratic after this message, it may be due to a fatal memory error and you may have to reset the
system.

11 Instruction Set
In the instruction format shown below, the "^" symbol stands for a parameter which reduces to a
number. All numbers are tested to determine if they fit in the space provided in the instruction.
Parameters which are specified as signed such as offsets or signed integers must lie in the
appropriate range. For example, signed 16 bit offsets must be between -32768 and 32767 decimal
or equivalently between -08000 and 7FFF in hexadecimal.

ABA ABX ABY ABZ
ACE ACED ADCA #^ ADCA E,X
ADCA E,Y ADCA E,Z ADCA ̂ ADCA ̂ ,X
ADCA ̂ ,X ADCA ̂ ,Y ADCA ̂ ,Y ADCA ̂ ,Z
ADCA ̂ ,Z ADCB #^ ADCB E,X ADCB E,Y
ADCB E,Z ADCB ^ ADCB ^,X ADCB ^,X
ADCB ^,Y ADCB ^,Y ADCB ^,Z ADCB ^,Z
ADCD #^ ADCD E,X ADCD E,Y ADCD E,Z
ADCD ^ ADCD ^,X ADCD ^,X ADCD ^,Y
ADCD ^,Y ADCD ^,Z ADCD ^,Z ADCE #^
ADCE ^ ADCE ^,X ADCE ^,Y ADCE ^,Z
ADDA #^ ADDA E,X ADDA E,Y ADDA E,Z
ADDA ̂ ADDA ̂ ,X ADDA ̂ ,X ADDA ̂ ,Y
ADDA ̂ ,Y ADDA ̂ ,Z ADDA ̂ ,Z ADDB #^
ADDB E,X ADDB E,Y ADDB E,Z ADDB ^

ICD16Z Debugger - User Manual 44

ADDB ^,X ADDB ^,X ADDB ^,Y ADDB ^,Y
ADDB ^,Z ADDB ^,Z ADDD #^ ADDD #^
ADDD E,X ADDD E,Y ADDD E,Z ADDD ^
ADDD ^,X ADDD ^,X ADDD ^,Y ADDD ^,Y
ADDD ^,Z ADDD ^,Z ADDE #^ ADDE #^
ADDE ^ ADDE ^,X ADDE ^,Y ADDE ^,Z
ADE ADX ADY ADZ
AEX AEY AEZ AIS #^
AIS #^ AIX #^ AIX #^ AIY #^
AIY #^ AIZ #^ AIZ #^ ANDA #^
ANDA E,X ANDA E,Y ANDA E,Z ANDA ̂
ANDA ̂ ,X ANDA ̂ ,X ANDA ̂ ,Y ANDA ̂ ,Y
ANDA ̂ ,Z ANDA ̂ ,Z ANDB #^ ANDB E,X
ANDB E,Y ANDB E,Z ANDB ^ ANDB ^,X
ANDB ^,X ANDB ^,Y ANDB ^,Y ANDB ^,Z
ANDB ^,Z ANDD #^ ANDD E,X ANDD E,Y
ANDD E,Z ANDD ^ ANDD ^,X ANDD ^,X
ANDD ^,Y ANDD ^,Y ANDD ^,Z ANDD ^,Z
ANDE #^ ANDE ^ ANDE ^,X ANDE ^,Y
ANDE ^,Z ANDP #^ ASL ^ ASL ^,X
ASL ^,X ASL ^,Y ASL ^,Y ASL ^,Z
ASL ^,Z ASLA ASLB ASLD
ASLE ASLM ASLW ^ ASLW ^,X
ASLW ^,Y ASLW ^,Z ASR ^ ASR ^,X
ASR ^,X ASR ^,Y ASR ^,Y ASR ^,Z
ASR ^,Z ASRA ASRB ASRD
ASRE ASRM ASRW ^ ASRW ^,X
ASRW ^,Y ASRW ^,Z BCC ^ BCLR ^,X,^
BCLR ^,X,^ BCLR ^,Y,^ BCLR ^,Y,^ BCLR ^,Z,^
BCLR ^,Z,^ BCLR ^,^ BCLRW ^,X,^ BCLRW ^,Y,^
BCLRW ^,Z,^ BCLRW ^,^ BCS ^ BEQ ^
BGE ^ BGND BGT ^ BHI ^
BITA #^ BITA E,X BITA E,Y BITA E,Z
BITA ̂ BITA ̂ ,X BITA ̂ ,X BITA ̂ ,Y
BITA ̂ ,Y BITA ̂ ,Z BITA ̂ ,Z BITB #^
BITB E,X BITB E,Y BITB E,Z BITB ^
BITB ^,X BITB ^,X BITB ^,Y BITB ^,Y
BITB ^,Z BITB ^,Z BLE ^ BLS ^
BLT ^ BMI ^ BNE ^ BPL ^
BRA ̂ BRCLR ^,X,^,^ BRCLR ^,X,^,^ BRCLR ^,Y,^,^
BRCLR ^,Y,^,^ BRCLR ^,Z,^,^ BRCLR ^,Z,^,^ BRCLR ^,^,^
BRN ^ BRSET ^,X,^,^ BRSET ^,X,^,^ BRSET ^,Y,^,^
BRSET ^,Y,^,^ BRSET ^,Z,^,^ BRSET ^,Z,^,^ BRSET ^,^,^
BSET ^,X,^ BSET ^,X,^ BSET ^,Y,^ BSET ^,Y,^

ICD16Z Debugger - User Manual 45

BSET ^,Z,^ BSET ^,Z,^ BSET ^,^ BSETW ^,X,^
BSETW ^,Y,^ BSETW ^,Z,^ BSETW ^,^ BSR ^
BVC ^ BVS ^ CBA CLR ^
CLR ^,X CLR ^,X CLR ^,Y CLR ^,Y
CLR ^,Z CLR ^,Z CLRA CLRB
CLRD CLRE CLRM CLRW ^
CLRW ^,X CLRW ^,Y CLRW ^,Z CMPA #^
CMPA E,X CMPA E,Y CMPA E,Z CMPA ̂
CMPA ̂ ,X CMPA ̂ ,X CMPA ̂ ,Y CMPA ̂ ,Y
CMPA ̂ ,Z CMPA ̂ ,Z CMPB #^ CMPB E,X
CMPB E,Y CMPB E,Z CMPB ^ CMPB ^,X
CMPB ^,X CMPB ^,Y CMPB ^,Y CMPB ^,Z
CMPB ^,Z COM ^ COM ^,X COM ^,X
COM ^,Y COM ^,Y COM ^,Z COM ^,Z
COMA COMB COMD COME
COMW ^ COMW ^,X COMW ^,Y COMW ^,Z
CPD #^ CPD E,X CPD E,Y CPD E,Z
CPD ^ CPD ^,X CPD ^,X CPD ^,Y
CPD ^,Y CPD ^,Z CPD ^,Z CPE #^
CPE ^ CPE ^,X CPE ^,Y CPE ^,Z
CPS #^ CPS ^ CPS ^,X CPS ^,X
CPS ^,Y CPS ^,Y CPS ^,Z CPS ^,Z
CPX #^ CPX ^ CPX ^,X CPX ^,X
CPX ^,Y CPX ^,Y CPX ^,Z CPX ^,Z
CPY #^ CPY ^ CPY ^,X CPY ^,X
CPY ^,Y CPY ^,Y CPY ^,Z CPY ^,Z
CPZ #^ CPZ ^ CPZ ^,X CPZ ^,X
CPZ ^,Y CPZ ^,Y CPZ ^,Z CPZ ^,Z
DAA DEC ^ DEC ^,X DEC ^,X
DEC ^,Y DEC ^,Y DEC ^,Z DEC ^,Z
DECA DECB DECW ^ DECW ^,X
DECW ^,Y DECW ^,Z EDIV EDIVS
EMUL EMULS EORA #^ EORA E,X
EORA E,Y EORA E,Z EORA ̂ EORA ̂ ,X
EORA ̂ ,X EORA ̂ ,Y EORA ̂ ,Y EORA ̂ ,Z
EORA ̂ ,Z EORB #^ EORB E,X EORB E,Y
EORB E,Z EORB ^ EORB ^,X EORB ^,X
EORB ^,Y EORB ^,Y EORB ^,Z EORB ^,Z
EORD #^ EORD E,X EORD E,Y EORD E,Z
EORD ^ EORD ^,X EORD ^,X EORD ^,Y
EORD ^,Y EORD ^,Z EORD ^,Z EORE #^
EORE ^ EORE ^,X EORE ^,Y EORE ^,Z
FDIV FMULS IDIV INC ^
INC ^,X INC ^,X INC ^,Y INC ^,Y

ICD16Z Debugger - User Manual 46

INC ^,Z INC ^,Z INCA INCB
INCW ^ INCW ^,X INCW ^,Y INCW ^,Z
JMP ^ JMP ^,X JMP ^,Y JMP ^,Z
JSR ^ JSR ^,X JSR ^,Y JSR ^,Z
LBCC ^ LBCS ^ LBEQ ^ LBEV ^
LBGE ^ LBGT ^ LBHI ^ LBLE ^
LBLS ^ LBLT ^ LBMI ^ LBMV ^
LBNE ^ LBPL ^ LBRA ̂ LBRN ^
LBSR ^ LBVC ^ LBVS ^ LDAA #^
LDAA E,X LDAA E,Y LDAA E,Z LDAA ̂
LDAA ̂ ,X LDAA ̂ ,X LDAA ̂ ,Y LDAA ̂ ,Y
LDAA ̂ ,Z LDAA ̂ ,Z LDAB #^ LDAB E,X
LDAB E,Y LDAB E,Z LDAB ^ LDAB ^,X
LDAB ^,X LDAB ^,Y LDAB ^,Y LDAB ^,Z
LDAB ^,Z LDD #^ LDD E,X LDD E,Y
LDD E,Z LDD ^ LDD ^,X LDD ^,X
LDD ^,Y LDD ^,Y LDD ^,Z LDD ^,Z
LDE #^ LDE ^ LDE ^,X LDE ^,Y
LDE ^,Z LDED ^ LDHI LDS #^
LDS ^ LDS ^,X LDS ^,X LDS ^,Y
LDS ^,Y LDS ^,Z LDS ^,Z LDX #^
LDX ^ LDX ^,X LDX ^,X LDX ^,Y
LDX ^,Y LDX ^,Z LDX ^,Z LDY #^
LDY ^ LDY ^,X LDY ^,X LDY ^,Y
LDY ^,Y LDY ^,Z LDY ^,Z LDZ #^
LDZ ^ LDZ ^,X LDZ ^,X LDZ ^,Y
LDZ ^,Y LDZ ^,Z LDZ ^,Z LPSTOP
LSR ^ LSR ^,X LSR ^,X LSR ^,Y
LSR ^,Y LSR ^,Z LSR ^,Z LSRA
LSRB LSRD LSRE LSRW ^
LSRW ^,X LSRW ^,Y LSRW ^,Z MAC ^,^
MOVB ,X(^) ^ MOVB ^ ,X(^) MOVB ^,^ MOVW ,X(^) ^
MOVW ^ ,X(^) MOVW ^,^ MUL NEG ^
NEG ^,X NEG ^,X NEG ^,Y NEG ^,Y
NEG ^,Z NEG ^,Z NEGA NEGB
NEGD NEGE NEGW ^ NEGW ^,X
NEGW ^,Y NEGW ^,Z NOP ORAA #^
ORAA E,X ORAA E,Y ORAA E,Z ORAA ̂
ORAA ̂ ,X ORAA ̂ ,X ORAA ̂ ,Y ORAA ̂ ,Y
ORAA ̂ ,Z ORAA ̂ ,Z ORAB #^ ORAB E,X
ORAB E,Y ORAB E,Z ORAB ^ ORAB ^,X
ORAB ^,X ORAB ^,Y ORAB ^,Y ORAB ^,Z
ORAB ^,Z ORD #^ ORD E,X ORD E,Y
ORD E,Z ORD ^ ORD ^,X ORD ^,X

ICD16Z Debugger - User Manual 47

ORD ^,Y ORD ^,Y ORD ^,Z ORD ^,Z
ORE #^ ORE ^ ORE ^,X ORE ^,Y
ORE ^,Z ORP #^ PSHA PSHB
PSHM ^ PSHMAC PULA PULB
PULM ^ PULMAC RMAC ^,^ ROL ^
ROL ^,X ROL ^,X ROL ^,Y ROL ^,Y
ROL ^,Z ROL ^,Z ROLA ROLB
ROLD ROLE ROLW ^ ROLW ^,X
ROLW ^,Y ROLW ^,Z ROR ^ ROR ^,X
ROR ^,X ROR ^,Y ROR ^,Y ROR ^,Z
ROR ^,Z RORA RORB RORD
RORE RORW ^ RORW ^,X RORW ^,Y
RORW ^,Z RTI RTS SBA
SBCA #^ SBCA E,X SBCA E,Y SBCA E,Z
SBCA ̂ SBCA ̂ ,X SBCA ̂ ,X SBCA ̂ ,Y
SBCA ̂ ,Y SBCA ̂ ,Z SBCA ̂ ,Z SBCB #^
SBCB E,X SBCB E,Y SBCB E,Z SBCB ^
SBCB ^,X SBCB ^,X SBCB ^,Y SBCB ^,Y
SBCB ^,Z SBCB ^,Z SBCD #^ SBCD E,X
SBCD E,Y SBCD E,Z SBCD ^ SBCD ^,X
SBCD ^,X SBCD ^,Y SBCD ^,Y SBCD ^,Z
SBCD ^,Z SBCE #^ SBCE ^ SBCE ^,X
SBCE ^,Y SBCE ^,Z SDE STAA E,X
STAA E,Y STAA E,Z STAA ̂ STAA ̂ ,X
STAA ̂ ,X STAA ̂ ,Y STAA ̂ ,Y STAA ̂ ,Z
STAA ̂ ,Z STAB E,X STAB E,Y STAB E,Z
STAB ^ STAB ^,X STAB ^,X STAB ^,Y
STAB ^,Y STAB ^,Z STAB ^,Z STD E,X
STD E,Y STD E,Z STD ^ STD ^,X
STD ^,X STD ^,Y STD ^,Y STD ^,Z
STD ^,Z STE ^ STE ^,X STE ^,Y
STE ^,Z STED ^ STS ^ STS ^,X
STS ^,X STS ^,Y STS ^,Y STS ^,Z
STS ^,Z STX ^ STX ^,X STX ^,X
STX ^,Y STX ^,Y STX ^,Z STX ^,Z
STY ^ STY ^,X STY ^,X STY ^,Y
STY ^,Y STY ^,Z STY ^,Z STZ ^
STZ ^,X STZ ^,X STZ ^,Y STZ ^,Y
STZ ^,Z STZ ^,Z SUBA #^ SUBA E,X
SUBA E,Y SUBA E,Z SUBA ̂ SUBA ̂ ,X
SUBA ̂ ,X SUBA ̂ ,Y SUBA ̂ ,Y SUBA ̂ ,Z
SUBA ̂ ,Z SUBB #^ SUBB E,X SUBB E,Y
SUBB E,Z SUBB ^ SUBB ^,X SUBB ^,X
SUBB ^,Y SUBB ^,Y SUBB ^,Z SUBB ^,Z

ICD16Z Debugger - User Manual 48

SUBD #^ SUBD E,X SUBD E,Y SUBD E,Z
SUBD ^ SUBD ^,X SUBD ^,X SUBD ^,Y
SUBD ^,Y SUBD ^,Z SUBD ^,Z SUBE #^
SUBE ^ SUBE ^,X SUBE ^,Y SUBE ^,Z
SWI SXT TAB TAP
TBA TBEK TBSK TBXK
TBYK TBZK TDE TDMSK
TDP TED TEDM TEKB
TEM TMER TMET TMXED
TPA TPD TSKB TST ^
TST ^,X TST ^,X TST ^,Y TST ^,Y
TST ^,Z TST ^,Z TSTA TSTB
TSTD TSTE TSTW ^ TSTW ^,X
TSTW ^,Y TSTW ^,Z TSX TSY
TSZ TXKB TXS TXY
TXZ TYKB TYS TYX
TYZ TZKB TZS TZX
TZY WAI XGAB XGDE
XGDX XGDY XGDZ XGEX
XGEY XGEZ

12 Running
Sometimes it is desirable to leave the CPU running and exit the ICD debug software. To do this,
use the GOEXIT command. To re-enter the ICD debug software, use the option RUNNING as a
parameter on the start up command line (see STARTUP). This option causes the debugger NOT
to do a RESET at startup and to ignore any STARTUP.ICD macro file. In order to use this option,
the CPU must have previously been left executing by the debugger.
It is possible to remove the ICD cable from your target system and then reconnect it provided that
the following sequence is observed:

1) Exit the ICD by using the GOEXIT command.
2) Disconnect cable without removing power connections**.
3) Remove power from cable.
4) Do whatever...
5) Connect power to cable.
6) Start the ICD software using the RUNNING option.
7) Connect cable to your target.

** Normally the Multilink debug probe receives its power (5 volts and Ground) from the target
system. You can modify the cable to maintain power when the 10 pin berg connector is removed
from your target. You can do this in two ways:

a) Cut the Vdd lead in the cable and use a separate power supply or jumper the cable power
back to your target. If you use a separate supply, you should maintain a common ground.

ICD16Z Debugger - User Manual 49

b) Attach a second insulation displacement connector to the ICD cable and jumper from it to the
target power supply.

13 Disassembly Mode
In disassembly mode, the base address of the code window is the first line showing in the window
when the scrollbar is at the top. Due to the nature of disassembly, you cannot scroll backwards
arbitrarily, and hence you must have a starting point. This starting point is the base address. The
base address can be set using the SHOWCODE command or by using the popup menu of the
code window. The base address has no meaning in source-level mode unless the user tries to
change it (again, refer to the showcode command).

14 'Add Variable' Box
The Add Variable box allows the user to display a variable specified by label or memory address,
and to choose the format and base of the data that is displayed. The Add Variable box pops up
when the user double-clicks the Variables Window.

Figure 14-1: Add Variable Dialog

Use the Variable / Address input field to enter the label or memory location for the data you wish to
be displayed.
Below, select from the Type and Base buttons to specify in which format and base you would like
the data to de displayed.

15 Memory Access
1. When you modify bytes, words, or longs they are read/written using the corresponding

background debug mode read/write.
2. When you modify program words, they are read/written using the corresponding back-

ground debug mode program space word read/write. Modifying bytes in program space is
accomplished using program space reads and writes. Modifying longs in program space is
done using double program space reads/writes.

3. The program memory window is read using program space word reads.
4. The data memory window is read using data space word reads.
5. The VAR window is read using the appropriate data space reads.
6. Code window data is read using program space word reads.

16 V1_RESET
The user should be aware of an aspect of the V1 part: BERR is necessary for BDM to work
properly, but upon reset, the default setting for the V1 part is IRQX. The V1_RESET command

ICD16Z Debugger - User Manual 50

allows the user to toggle the part to BERR immediately after reset, to avoid problems with BDM.
V1_RESET may be used as either a command or a command-line parameter.

17 X1_RESET
The X1_RESET command has been added to support the 68HC16X1 chip in the ICD16 debugger.
This command can be used as a command line parameter or a a regular ICD16 command from the
keyboard or a macro (script) file.
As of 10/95, current versions of the 68HC16X1 part do not bring out the CSBOOT line due to the
small footprint of the IC package. To facilitate easy startup in the debugger (after a reset), the ICD
software does the following steps when it detects a RESET condition:

1. Disables CSBOOT chip select.
2. Enables CS0 at address 0 for 64k, words, read write, supervisor-user.

NOTES:
1. The debugger detects a RESET condition by either sensing a change in the reset status

register or by seeing that CSBOOT has been enabled. Hence, your code running under
this option should not attempt to enable CSBOOT.

2. To terminate the X1_RESET mode, you must exit ICD16 and restart it.
3. When running on a Motorola Modular Platform Board, the pseudo ROM chip select should

be connected to CS0.

	1 Introduction
	2 Connection to Target
	3 Command Line Parameters
	4 Nomenclature
	5 User Interface
	5.1 Code Window
	5.2 Status Window
	5.3 CPU Window
	5.4 Variables Window
	5.5 Memory Window
	5.6 Colors Window

	6 Command Recall
	7 ICD16Z Commands
	7.1 A - Set Accumulator A
	7.2 AMH Command
	7.3 AML Command
	7.4 ASCIIF3 and ASCIIF6
	7.5 ASM - Assemble Instructions
	7.6 B - Set Accumulator B
	7.7 BELL - Sound Bell
	7.8 BGND_TIME
	7.9 BLOCK FILL or BF
	7.10 BR Command
	7.11 C - Set/Clear C-Bit
	7.12 CAPTURE
	7.13 CAPTUREOFF
	7.14 CCR - Set Condition Code Register
	7.15 CLEARMAP - Clear Map File
	7.16 CLEARSYMBOL - Clear User Symbols
	7.17 CLEARVAR
	7.18 CODE
	7.19 COLORS - Set Colors of Simulator
	7.20 COUNT
	7.21 COUNTER
	7.22 D - Set Double Accumulator D
	7.23 D_UPLOAD_SREC
	7.24 DASM - Disassemble Memory
	7.25 DMM[.X] Command
	7.26 DUMP - Dump Data Memory to Screen
	7.27 DUMP_TRACE
	7.28 E - Set Accumulator E
	7.29 EK - Set EK Extension Register
	7.30 EVAL - Evaluate Expression
	7.31 EXIT or QUIT - Exit Program
	7.32 G or GO or RUN - Begin Program Execution
	7.33 GOEXIT
	7.34 GONEXT
	7.35 GOTIL - Execute Program until Address
	7.36 GOTILROM
	7.37 H - Set/Clear H-Bit
	7.38 HELP - Open Help File
	7.39 HR - Set MAC Register H
	7.40 INFO - Display Line Information
	7.41 IP - Interrupt Priority Field
	7.42 IR - Set MAC Register I
	7.43 IX - Set X Index Register
	7.44 IY - Set Y Index Register
	7.45 IZ - Set Z Index Register
	7.46 K - Set Address Extension Registers
	7.47 LF or LOGFILE - Open / Close Log File
	7.48 LISTON - Show Info during Steps
	7.49 LISTOFF - Do Not Show Info During Steps
	7.50 LOAD - Load S19 and MAP
	7.51 LOADALL
	7.52 LOADDESK - Load Desktop Settings
	7.53 LOADMAP - Load Map File
	7.54 LOADV
	7.55 LOAD_BIN
	7.56 LOADV_BIN
	7.57 MAC Command
	7.58 MACS
	7.59 MACRO or SCRIPT - Execute a Batch File
	7.60 MACROEND - Stop Saving Commands to File
	7.61 MACROSTART - Save Debug Commands to File
	7.62 MD or SHOW - Display Memory at Address
	7.63 MD2 Command
	7.64 MDF3 / MDF6 or SHOWF3 / SHOWF6
	7.65 MM or MEM - Modify Memory
	7.66 N - Set/Clear N-Bit
	7.67 NOBR
	7.68 PC - Set Program Counter
	7.69 PDUMP - Dump Program Memory To Screen
	7.70 PK - Set PC Extension Register
	7.71 PMM[.X] Command
	7.72 QUIET
	7.73 QUIT
	7.74 R - Use Register Files
	7.75 REG or STATUS - Show Registers
	7.76 REM - Place Comment in Macro File
	7.77 RESET - Reset Emulation MCU
	7.78 S - Set/Clear S-Bit
	7.79 SAVEDESK - Save Desktop Settings
	7.80 SERIAL
	7.81 SERIALOFF
	7.82 SERIALON
	7.83 SHOWCODE - Display Code at Address
	7.84 SHOWMAP or MAP - Show Information in Map File
	7.85 SHOWPC - Display Code at PC
	7.86 SHOWTRACE
	7.87 SIGNLATCH Command
	7.88 SK - Set Stack Extension Register
	7.89 SNAPSHOT
	7.90 SOURCE
	7.91 SOURCEPATH
	7.92 SP - Set Stack Pointer
	7.93 SS
	7.94 ST or STEP or T - Single Step
	7.95 STEPFOR - Step Forever
	7.96 STEPTIL - Single Step to Address
	7.97 SYMBOL - Add Symbol
	7.98 TIME
	7.99 TRACE
	7.100 UPLOAD_SREC - Upload S-Record to Screen
	7.101 V - Set/Clear V-Bit
	7.102 VAR - Display Variable
	7.103 VERIFY
	7.104 VERSION or VER - Display Software Version
	7.105 WATCHDOG
	7.106 WHEREIS - Display Symbol Value
	7.107 XK - Set XK Extension Register
	7.108 XMASK
	7.109 Y Command - Set Y Index Register
	7.110 Y MASK
	7.111 YK - Set YK Extension Register
	7.112 Z - Set/Clear Z-Bit
	7.113 ZK - Set ZK Extension Register

	8 CPU Values & Names
	9 Source Level Debugging
	10 Errors
	11 Instruction Set
	12 Running
	13 Disassembly Mode
	14 'Add Variable' Box
	15 Memory Access
	16 V1_RESET
	17 X1_RESET

