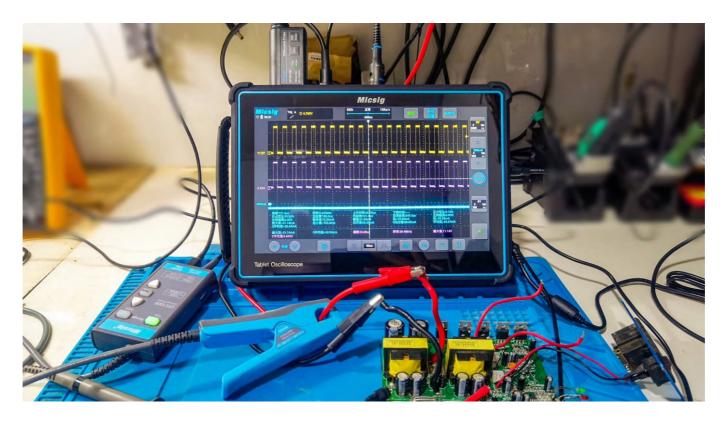
Micsig

Tablet Oscilloscope TO series

- 2/4 Analog Channels
- Max. 300MHz Bandwidth
- Max. 220Mpts Memory Depth
- Max. 2GSa/s Sampling Rate
- 7500mAh Li-ion Battery
- 10.1" Integrated Touchscreen


Intuitive, Superior, Intelligent, Professional

Product Overview

The TO series Tablet Oscilloscope features 2&4 analog channels, up to 300MHz bandwidth, 2GSa/s sampling rate and max. 220Mpts memory depth, running with Micsig latest SigtestUI[™] multitasking system, make sure long-time stable and smooth performance. 10.1-inch integrated full touch screen with 1280 x 800 high resolution, combined with Micsig's over 10 years of experience in touch control algorithms, the TO series brings touch experience to another level.

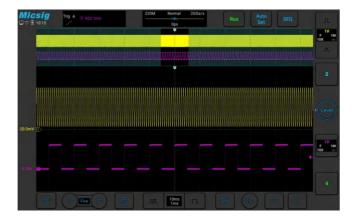
The TO series Tablet Oscilloscope comes in a compact form factor, making it a go-to oscilloscope for electronic debug and test, integrates comprehensive measurement and mathematical functions, supports serial bus triggering and decoding, also equipped with hardware digital filtering modules and other functions. Powered by built-in battery, it helps engineers work where they work.

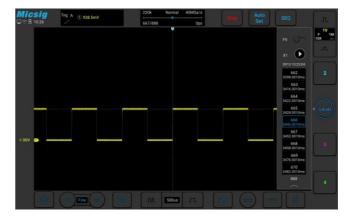
Key Specifications

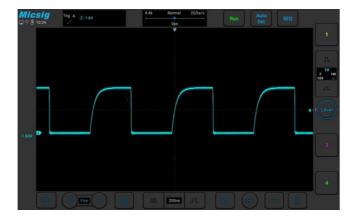
Model	TO3004	TO3002	TO2004	TO2002	TO1004
Bandwidth	300MHz	300MHz	200MHz	200MHz	100MHz
Analog channels	4	2	4	2	4
Rise time	≤1.16ns	≤1.16ns	≤1.75ns	≤1.75ns	≤3.5ns
Max. Sampling rate	2GSa/s	2GSa/s	2GSa/s	1GSa/s	1GSa/s
Max. Memory depth	220Mpts	220Mpts	220Mpts	110Mpts	110Mpts
Waveform capture rate	300,000 wfms/s	300,000 wfms/s	300,000 wfms/s	78,000 wfms/s	78,000 wfms/s
Bus decoding	RS-232/422/485/UART, CAN, CAN FD, LIN, SPI, I ² C				
Input impedance	1ΜΩ / 50Ω 1ΜΩ			MΩ	
Interfaces	Wi-Fi, USB 3.0/2.0 Host, USB Type-C, Grounding, HDMI, Trigger out				
Vertical resolution	8 bits				
Storage	32G				
Display	10.1 Inch LCD capacitive touch display,1280*800 resolution,11*10 grids				
Size/Net weight	265*192*50mm / 1.9kg (with battery)				
Battery	7.4V, 7500mAh Li-Ion battery				

Product Features

 Built-in 7500mAh Li-ion battery, Support Power-off lock, more secure to travel with.


 Power button, Grounding plug, Probe Calibration Output, USB3.0/2.0, HDMI, Type-C, Power Supply, Power-off Lock (Note: switch to ON for first-time use)

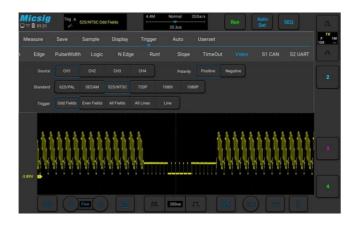

The TO series supports PC software + Mobile App (Android / iOS) remote control via Wi-Fi, USB, able to access internet for online upgrade, it also can be projected through HDMI port for demonstrations for training and education purpose.


Ultra Memory Depth

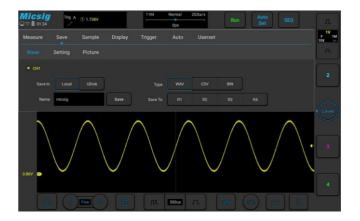
Using hardware-based Zoom technique and memory depth of up to 220Mpts, allow users to move and browse waveforms much easier and quickly zoom in/out to interested events.

Segmented Storage Acquisition

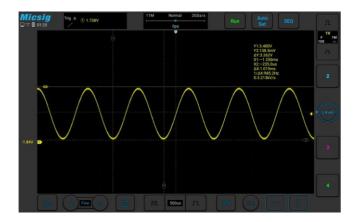
Up to 10,000 waveform events can be captured for efficient analysis, helping users to capture occasional signals and more optimally save the data required. (Only available on TO3004/TO3002/TO2004)


High Waveform Update Rate

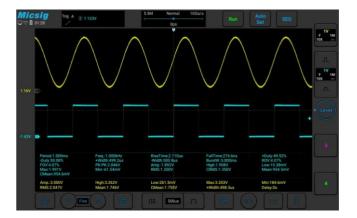
Up to 300,000 wfms/s update rate, the TO series can easily capture unusual or low probability events.


Serial Bus Decoding and Analysis

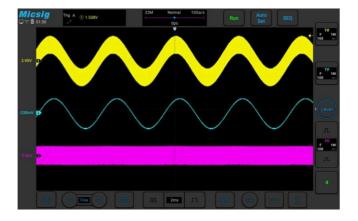
Support RS-232/422/485/UART, LIN, CAN, CAN FD, I²C, SPI hardware-based serial bus decoding and triggering, display waveform and data at the same time.


Powerful Trigger Functions

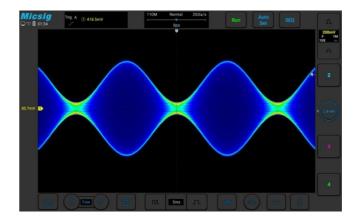
Support Edge, Pulse, Logic, N Edge, Runt, Slope, Timeout, Video and Serial trigger, most intuitive trigger settings, fast and easy trigger source switching.


Fast Storage Function

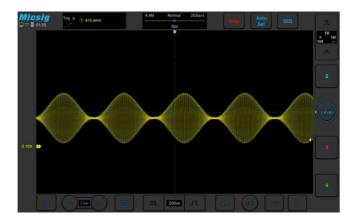
Micsig's unique fast storage function allow users quickly save waveforms with one press, a full screen of 220M waveform data can be completely saved in BIN format. More than 70% faster than traditional oscilloscopes.


Convenient Cursor Measurements

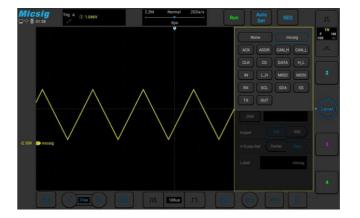
One touch to open horizontal and vertical cursors, each cursor can be moved separately or simultaneously, brings unmatched user experience.


31 Auto Measurements

All 31 types of automatic measurements can be displayed on one screen, one touch to clear, the best auto measurement on the market.

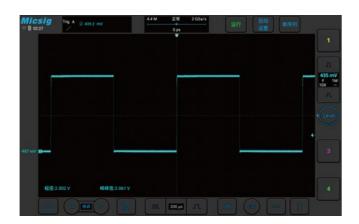

Hardware Digital Filtering

The TO series high pass / low pass filter function helps engineers rule out insignificant frequency so to eliminate interference, and observe the true state of the signal.


Color Temperature Display

The Color temperature display is similar to the intensity-graded trace function, but the trace occurrence is represented by different colors as opposed to changes in the intensity of one color. Red colors represent more frequently occurred events, while the bule represents less frequently ones.

256-Level Intensity Grading


The TO series has digital fluorescent display, the resulting intensitygraded trace is brighter for events that occur with more frequency and dims when the events occur with less frequency.

User Defined Channel Label

Users can set different labels for different sources to facilitate observation and readout.

Vertical scale fining

By pinching two fingers apart on the screen, you can adjust the vertical scale as you like, no longer limited by the 1/2/5 step limit.

Large 32GB Internal Storage

With 32G large storage, user can wirelessly access/view mass files like pictures, videos via PC or mobile phone.

Recommended Options

1212220				-548µs	1000	Construction of the local distance of the lo	
测量	保存	采样	显示	触发	自动	用户设置	432
常规		频率计					10
开关 🧲	D					0	清除
				10.00.00			2
平均值 🧲		· · · ·		均万麦	у и	-x -0	
							Le
							+
4							
	編值 峰峰						
当前值: 1							
平均值: 1 最大值: 1							
最小值: 1							
Librah data a	JV 15.8	omv					
均方差:0 计数:3	30 30						

Statistics Function

Using statistics to read the current measurement item multiple times, monitor the change trend, the maximum number of readings can reach 10,000.

Android Operation System

With industry-first Android based OS, the TO series provides excellent user experience and promising applications.

Handbag & Suitcase	
Special Handbag	Black nylon canvas, suitable for all Micsig oscilloscopes
Special Suitcase	PP hard-shell, EVA foam, optional for tablet scope and automotive scope
Current Probes	
High Frequency AC/DC Current Probe	Bandwidth: 50 / 100MHz, Range: 6A/30A, Accuracy: ±1%, BNC interface
Rogowski Coil AC Current Probe RCP500	Bandwidth: 15-300KHz, Range: 200mApk-500Apk, Accuracy: 1%, BNC interface / Micsig UPI interface
AC Current Probe ACP1000	Bandwidth: 10Hz-100KHz, Range: 0.1Apk-1000Apk, BNC interface
Low Frequency AC/DC Current Probe CP2100B	Bandwidth: DC~2.5MHz, Range: 10A/100A, BNC interface
Low Frequency AC/DC Current Probe CP2100A	Bandwidth: DC~800KHz, Range: 10A/100A, BNC interface
Voltage Probes	
High Voltage Differential Probe DP750-100	Bandwidth: 100MHz, Max. input differential voltage(DC+AC PK): 75V(50X), 750V(500X), Accuracy: ±2%, BNC interface / Micsig UPI interface
High Voltage Differential Probe DP series	Bandwidth: 100MHz, 700V-5600Vpk, Accuracy: ±2%, BNC interface
High Voltage Differential Probe MDP series	Bandwidth: 100MHz, 700V-3000Vpk Accuracy: ±2%, BNC interface
SigOFIT [™] optical-fiber isolated probe	Bandwidth: 100MHz - 1GHz, common mode voltage: 60kVpk, CMRR: DC -160dB.

Technical Parameters

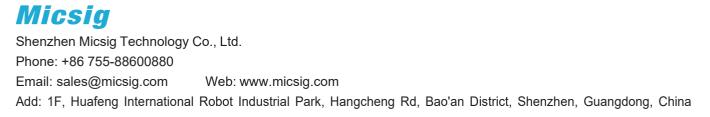
Vertical system			
Invert	Support		
Bandwidth filter	TO3004 / TO3002 / TO2004: 20MHz, high pass / low pass (to 30Hz) TO2002 / TO1004: 20MHz, high pass / low pass (to 30KHz)		
Coupling	DC, AC, GND		
Input Impedance and Accuracy	TO3004 / TO3002 / TO2004: 1MΩ±1% 50Ω±1 TO2002 / TO1004: 1MΩ±1%	%	
Vertical resolution	8 bits		
Vertical scale factor	TO3004 / TO3002 / TO2004: 1mV/div~10V/div TO2002 / TO1004: 1mV/div~10V/div @ 1MΩ	@ 1MΩ; 1mV/div~1V/div @ 50Ω	
DC Gain accuracy	5mV/div ~10V/div: ≤ ±2.0% ≤ 2mV/div: ≤ ±3.0%		
Vertical offset range($1M\Omega/50\Omega$)	$\pm 2.5V(@probe 1X, < 500mV/div), \pm 120V(@probe 1X, \ge 500mV/div)$		
Noise floor	≤1.2mVpp (1mV/div, 1MΩ)		
Probe Attenuation Ratio	1mX~10kX, 1-2-5 sequence		
Max. input voltage	CAT I 300Vrms 400Vpk (1MΩ), 5Vrms (50Ω)		
Channel isolation	> 40dB (≤100MHz), > 35dB (> 100MHz)		
Channel label	Support		
Sampling System	TO3004 / TO2004 / TO3002	TO2002 / TO1004	
Real-time sample rate	2G Sa/s (single CH), 1G Sa/s (all CHs)	1G Sa/s (single CH), 250M Sa/s (all CHs)	
Memory depth (Max.)	220Mpts	110Mpts	
Segmented storage	Support	Not support	
Average	2,4,8,16,32,64,128,256		
Envelope	2,4,8,16,32,64,128,256,∞		
Horizontal system			
Horizontal scale	1ns/div~1ks/div (TO2002 / TO1004: 2ns/div-	1ks/div)	
Time base accuracy	20ppm		
Horizontal divisions	11 divs		
Time base delay time range	-11 div ~ 11ks, resolution: 1 pixel		

Trigger System	
Trigger mode	Auto, Normal, Single
Trigger level range (analog)	±5div from screen center, analog channel
Hold off range	200ns~10s
Trigger coupling and frequency (analog channel)	DC, AC(70Hz), low frequency (40KHz), high frequency (40KHz), noise (10MHz)
Trigger Types	Edge, Pulse Width, Logic, N Edge, Runt Pulse (Runt), Slope, Time Out, Video
Bus decoding	RS-232/422/485/UART, CAN, CAN FD, LIN, SPI, I ² C
Measurements	
Auto measurements	Period, Frequency, Rise Time, Fall Time, Delay, Positive Duty Cycle, Negative Duty Cycle, Positive Pulse Width, Negative Pulse Width, Burst Width, Positive Overshoot, Negative Overshoot, Phase, Peak-to-Peak, Amplitude, High, Low, Maximum, Minimum, RMS, Cycle RMS, Mean, Cycle Mean
Hardware frequency counter and resolution	Support each analog channel, 6bit, 2Hz~max. bandwidth, pk-pk > 0.8div
Cursor	Horizontal, vertical, cross
Cursor resolution	1 pixel
Math	
Dual waveform	+, -, *, /, Analog channel
FFT	Points: max. 275KdBVrms; Source: Analog channel; Resolution: Max 100Kpts Window: Rectangular, Hamming, Blackman, Hanning
AX+B	A: ±1k, Min. Resolution 1p or 4it B: ±1k, Resolution 1p or 5bit X: Analog channel
Advance math	Advanced input, including +, -, *, /, < , > , ≤, ≥, ==, !=, &&, , (,), !(,
	sqrt, abs, deg, rad, exp, diff, In, sin, cos, tan, intg, Ig, asin, acos, atan,
Waveform store	sqrt, abs, deg, rad, exp, diff, ln, sin, cos, tan, intg, lg, asin, acos, atan,
Waveform store Source	sqrt, abs, deg, rad, exp, diff, In, sin, cos, tan, intg, Ig, asin, acos, atan, Analog channel, math channel
Source	Analog channel, math channel
Source Storage location	Analog channel, math channel Local (32G), USB
Source Storage location Waveform format	Analog channel, math channel Local (32G), USB WAV, CSV, BIN
Source Storage location Waveform format Storage quantity	Analog channel, math channel Local (32G), USB WAV, CSV, BIN Unlimited
Source Storage location Waveform format Storage quantity Waveform rename	Analog channel, math channel Local (32G), USB WAV, CSV, BIN Unlimited Support

Auto	
Auto configuration	Channel switch (threshold level can be set), Trigger source (max. signal, current)
Auto range	Vertical scale, horizontal scale, trigger level
Display	
LCD screen and resolution	10.1 inches, 1280*800 resolution, 11*10 Divisions
Waveform Update Rate	TO3004/2004/3002 is 300,000 wfms/s; TO2002/TO1004 is 78,000 wfms/s
Grid Type	Full, Line, None, Cross
Brightness	Adjustable
Waveform Display	Line, Dot
Persistence	Auto, 10ms~10s, ∞
Waveform gray scale	256 Level
Color temperature display	Support

Interfaces	
USB3.0 Port	Support one USB storage device
USB2.0 Port	1, readable & writable
USB Type-C	1, readable & writable
DC Port	1, Supply power to oscillsocope
Probe calibration signal	1KHz, 2Vpk-pk
НОМІ	HDMI 1.4
Wi-Fi	Support
Android/iOS Remote control application	Support

Others	
Battery	7.4V, 7500mAh Li-Ion Battery
Self-calibration	Support
Languages	English, Chinese, German, French, Czech, Korean, Spanish, Italian, etc
Factory information	Model, SN, Bandwidth, Serial Number, Version, Factory Date
Operating System	Android
Built-in app	App Store, Browser, Oscilloscope, Calendar, Clock, Gallery, Calculator, User Guide, Electronic Tools, File Manager


Power Source	
Adapter input	100~240VAC, 50/60Hz
Power consumption	< 60W
Adapter output	12V DC, 5A (TO2002 / TO1004 is 12V DC, 4A)
Battery	7.4V, 7500mAh Li-ion battery

Micsig / Tablet Oscilloscope TO Series / Datasheet

Environment	
Temperature	
Operating	0°C ~ 45°C
Non-operating	-40°C ~ 60°C
Humidity	
Operating	5% ~ 85%, 25℃
Non-operating	5% ~ 90%, 25℃
Altitude	
Operating	< 3000m
Non-operating	< 12000m
Physical Characteristics	
Dimensions (W x H x D)	265*192*50mm
Weight	Net: 1.9kg (with battery), Volum Weight: 4.5kg
Standard Accessories	

Passive Probe	Measuring voltage: 10X: < 600V AC pk, one per channel
Power Adapter	One (Localized)
Power Cord	One
Warranty	Three-year warranty for Base Unit only. Probes, battery and related accessories are for 180 days

