
Promira Serial Platform – eSPI Analysis
Application

The Promira Serial Platform with eSPI Analysis Application
allows developers to interface a host PC to a downstream
embedded system environment and non-intrusively monitors
eSPI data in real time as it appears on the bus.

Promira Serial Platform – eSPI Analysis Application
Features

• eSPI – Eight-Wire Interface
◦ Non-intrusive eSPI monitoring up to 66 MHz
◦ Single, Dual, and Quad eSPI functionality
◦ Two CS Signals
◦ Two Alert Signals
◦ Two Reset Signals
◦ Eleven Digital IO Signals
◦ Target Power 5V or 3.3V
◦ IO Power 1.8V
◦ 64 MB on-board hardware buffer
◦ Packet-level timing down to 30 ns resolution
◦ Digital inputs and outputs for synchronizing with external

logic
◦ Advanced/Simple match triggers
◦ Hardware filters
◦ Hardware statistics

• Software
◦ Windows, Linux, and Mac OS X compatible
◦ Easy to integrate application interface
◦ Upgradeable Firmware over USB

Supported products:

Promira Serial Platform
eSPI Analysis Application
User Manual v1.10.000

February 29, 2016

1 Revision History

1.1 Changes in version 1.10

Added eSPI advanced/simple match triggers, hardware filters, and hardware statistics
features.

Fixed Pin Description Table typo. IO1 signal is pin 5, and IO0 signal is pin 5.

1.2 Changes in version 1.00

Initial revision.

Promira eSPI Analysis User Manual v1.10.000

2

2 General Overview
The Promira Serial Platform with eSPI Analysis Application non-intrusively monitors eSPI
bus at up to 66 MHz bit rate in single, dual and quad IO modes. The Promira platform
with eSPI analysis application supports two CS signals, two Reset signals, two Alert
signals, and 11 Digital IO signals. The Promira platform connects to an analysis
computer via Ethernet or Ethernet over USB. The application installed on the Promira
platform is field-upgradeable and future-proof.

2.1 eSPI Background

2.1.1 eSPI Overview

The Enhanced Serial Peripheral Interface (eSPI) bus interface is used for both client and
server platforms. The devices that can be supported over the eSPI interface includes but
not necessary limited to Embedded Controller (EC), Baseboard Management Controller
(BMC), Super-I/O (SIO) and Port-80 debug card.

The eSPI has been specified by Intel as a replacement for the existing Intel Low Pin
Count (LPC) interface on current server and client platforms. LPC bus is a legacy bus
developed as the replacement for Industry Standard Architecture (ISA) bus. Some LPC
bus limitations, which led to the development of eSPI, are:

• LPC requires up to 13 pins, of which 7 are required and 6 are optional.

• Current LPC implementations include a fabrication process cost burden as it is
based on 3.3V IO signaling technology.

• The LPC bus clock frequency is fixed at 33 MHz that fixed the bandwidth at 133
Mbps.

• The LPC has a significant number of sideband signals.

The eSPI specification provides a path for migrating LPC devices over to the new eSPI
interface. eSPI reuses the timing and electrical specification of Serial Peripheral
Interface (SPI), but with a different protocol to meet a set of different requirements.

Comparing eSPI and SPI

Promira eSPI Analysis User Manual v1.10.000

3

Figure 1 : Intel eSPI

Figure 2 : Motorola SPI

Table 1 : eSPI/SPI Comparison

Pin Name Intel eSPI Motorola SPI

CS/SS (Master to Slave) Yes Yes

CLK/SCLK (Master to Slave) Yes Yes

IO [n:0] / MOSI/MISO (Bi-directional) Yes Yes

Reset (Master to Slave or Slave to Master) Yes No

Alert (Slave to Master) Yes No

Promira eSPI Analysis User Manual v1.10.000

4

2.1.2 eSPI Architecture

eSPI Topology

The Enhanced Serial Peripheral Interface (eSPI) operates in master/slave mode of
operation where the eSPI master dictates the flow of command and data between itself
and the eSPI slaves by controlling the Chip Select# pins for each of the eSPI slaves. At
any one time, the eSPI master must ensure that only one of the Chip Select# pins is
asserted based on source decode, thus allowing transactions to flow between the eSPI
master and the corresponding eSPI slave associated with the Chip Select# pin. The
eSPI master is the only component that is allowed to drive Chip Select# when eSPI
Reset# is de-asserted. For an eSPI bus, there is only one eSPI master and one or more
eSPI slaves.

In Single Master - Single Slave configuration, a single eSPI master will be connected to
a single eSPI slave. In one configuration, the eSPI slave could be the device that
generates the eSPI Reset#. In this case, the eSPI Reset# is driven from eSPI slave to
eSPI master. In other configuration, the eSPI Reset# could be generated by the eSPI
master and thus, it is driven from eSPI master to eSPI slave.

Multiple SPI and eSPI slaves could be connected to the same eSPI bus interface in a
multi-drop Single Master - Multiple Slaves configuration. The number of devices that can
be supported over a single eSPI bus interface is limited by bus loading and signals trace
length. In this configuration, the clock and data pins are shared by multiple SPI and eSPI
slaves. Each of the slaves has its dedicated Chip Select# and Alert# pins.

In an eSPI bus configuration with multiple slaves present, the eSPI master may support
2 eSPI Reset# pins, one from eSPI slave to eSPI master and another one from eSPI
master to eSPI slaves. In this case, the master's eSPI interface will only be reset if all the
slaves' eSPI interfaces are reset.

SPI slaves such as Flash and defined TPM are allowed to share the same set of clock
and data pins with eSPI slaves. These non-eSPI slaves are selected using the dedicated
Chip Select# pins and they communicate with the eSPI master through SPI specific
protocols run over the eSPI bus.

eSPI Architecture Description

In a Single Master - Single Slave configuration, there could be multiple eSPI host bridges
within a single eSPI master and there could be multiple eSPI endpoints within a single
eSPI slave. When Chip Select# corresponding to the eSPI slave is asserted, command
and data transfer happens between the eSPI master and eSPI slave, which could be a
result of the eSPI host bridge and eSPI endpoint communications. Each of the eSPI host
bridges communicates with its corresponding eSPI endpoint through dedicated channel.
The use of channels allows multiple independent flows of command and data to be

Promira eSPI Analysis User Manual v1.10.000

5

transferred over the same bus between the eSPI master and eSPI slave with no ordering
requirement.

In Single Master - Multiple Slaves configuration multiple discrete eSPI slaves can be
dropped onto the eSPI bus. Each of the eSPI slaves should have a dedicated Chip
Select# pin. On the master side, there are eSPI host bridges corresponding to each of
the discrete slaves respectively, each driving the Chip Select# pin of the corresponding
discrete slave. At any one time, only one of the Chip Select# pins can be asserted.
Command and data transfer can then happen between the eSPI host bridge and the
corresponding eSPI slave.

Promira eSPI Analysis User Manual v1.10.000

6

Figure 3 : Single Master - Single Slave

Promira eSPI Analysis User Manual v1.10.000

7

Figure 4 : Single Master - Multi Slave

Promira eSPI Analysis User Manual v1.10.000

8

2.1.3 eSPI Operations Theory

The Serial Clock must be low at the assertion edge of the Chip Select# (CS#) while eSPI
Reset# has been de-asserted. The first data is launched from master while the serial
clock is still low and sampled on the first rising edge of the clock by slave. Subsequent
data is launched on the falling edge of the clock from master and sampled on the rising
edge of the clock by slave. The data is launched from slave on the falling edge of the
clock. The master could implement a more flexible sampling scheme since it controls the
clock. All transactions on eSPI must be in multiple of 8-bits (one Byte).

eSPI master and eSPI slaves must tri-state the interface pins when their respective eSPI
Reset# is asserted. The Chip Select#, I/O[n:0] and Alert# pins require weak pull-up to be
enabled on these pins whereas the Serial Clock requires a weak pull-down. The weak
pull-up/pull-down should be implemented either as an integral part of the eSPI master
buffer or on the board.

After eSPI Reset# is deasserted on the eSPI master, the eSPI master begins driving
Chip Select# and Serial Clock pins to their idle state appropriately. The weak pull-up on
the Chip Select# and the weak pull-down on the Serial Clock are allowed to be disabled
after the eSPI Reset# deassertion. However, I/O[n:0] and Alert# pins continue to have
the weak pull-up enabled for the proper operation of the eSPI bus.

Figure 5 : eSPI Operation

Promira eSPI Analysis User Manual v1.10.000

9

An eSPI transaction consists of a Command phase driven by master, a Turn-Around
(TAR) phase, and a Response phase driven by the slave. CRC generation is mandatory
for all eSPI transactions where CRC byte is always transmitted on the bus. A transaction
is initiated by the master by asserting the Chip Select#, starting the clock and driving the
command onto the data bus. The clock remains toggling until the complete response
phase has been received from the slaves.

Command Phase

The Command phase is used by the eSPI master to initiate a transaction to the slave or
in response to an Alert event by the slave. It consists of a CMD, an optional header
(HDR), optional DATA and a CRC. The Command Opcode is 8-bits wide.

Turn-Around (TAR) Phase

After the last bit of the Command Phase has been sent out on the data lines, the data
lines enter the Turn-Around window. The eSPI master is required to drive all the data
lines to logic '1' for the first clock of the Turn-Around window and tri-state the data lines
thereafter. The number of clocks for the Turn-Around window is a fixed 2 serial clocks
independent of the eSPI I/O Mode (single, dual or quad I/O).

Response Phase

The Response phase is driven by the eSPI slave in response to command initiated by an
eSPI master. It consists of a RSP opcode, an optional header (HDR), optional data,
STATUS (STS) and CRC. The RSP opcode is a 8-bit field consists of a Response Code
and a Response Modifier.

Slave-initiated transactions

A transaction can be initiated by the slave by first signaling an Alert event to the master.
The Alert event can be signaled in two ways. In the Single Master - Single Slave
configuration, the I/O[1] pin could be used by the slave to indicate an Alert event. In the
Single Master - Multiple Slaves configuration, a dedicated Alert# pin is required.

The Alert event can only be signaled by the slave when the Chip Select# is high. The
pin, either IO[1] or Alert# is toggled from tri-state to pulled low by the slave when it
decides to request for service. The slave then holds the state of the pin until the Chip
Select# is asserted by the master. Once the Chip Select# is asserted, the eSPI slave
must release the ownership of the pin by tri-stating the pin and the pin will be pulled high
by the weak pull-up. The master then continues to issue command to figure out the
cause of the Alert event from the device and then service the request.

At the last falling edge of the serial clock after CRC is sent, the eSPI slave must drive I/O
[n:0] and Alert# pins to high until Chip Select# is deasserted. After Chip Select#

Promira eSPI Analysis User Manual v1.10.000

10

deassertion, these pins are tri-stated by the slave, where the weak pull-ups maintain
these pins at high.

Figure 6 : Slave Triggered Transaction (Single Slave)

Figure 7 : Slave Triggered Transaction (Multiple Slaves)

Channels

A channel provides a means to allow multiple independent flows of traffic to share the
same physical bus. Each set of the put_*/get_*/*_avail/*_free associates with the
command and response of a corresponding channel. Each of the channels has its
dedicated resources such as queue and flow control. There is no ordering requirement
between traffic from different channels.

Promira eSPI Analysis User Manual v1.10.000

11

The number and types of channels supported by a particular eSPI slave is discovered
through the GET_CONFIGURATION command issued by the eSPI master to the eSPI
slave during initialization. The assignment of the channel type to the channel number is
fixed. The eSPI slave can only advertise which of the channels are supported.

There are four different channels types.

• Peripheral Channel: eSPI Peripheral channel is used for communication
between eSPI host bridge located on the master side and eSPI endpoints located
on the slave side. LPC Host and LPC Peripherals are an example of eSPI host
bridge and eSPI endpoints respectively.

• Virtual Wire Channel: The Virtual Wire channel is used to communicate the state
of sideband pins or GPIO tunneled through eSPI as in-band messages. Serial
IRQ interrupts are communicated through this channel as in-band messages.

• OOB Channel: The SMBus packets are tunneled through eSPI as Out-Of-Band
(OOB) messages. The whole SMBus packet is embedded inside the eSPI OOB
message as data.

• Flash Access Channel: The Flash Access channel provides a path allowing the
flash components to be shared run-time between chipset and the eSPI slaves that
require flash accesses such as EC and BMC.

Link Layer

All masters and slaves support Single I/O mode of operation. Support for Dual I/O and
Quad I/O mode of operation is advertised by the slave through the General Capabilities
and Configurations register.

By default coming out of eSPI Reset#, both master and slave operate in Single I/O
mode. The mode of operation can be changed by the master using the
SET_CONFIGURATION command. The SET_CONFIGURATION is completed with the
current mode of operation. The new mode of operation will only take effect at the
deassertion edge of the Chip Select#.

Each of the fields for an eSPI transaction is shifted out accordingly in a defined order.
For fields that contain multiple bytes, the order of the bytes being shifted out on the eSPI
bus is as follows (LSB = Least Significant Byte, MSB = Most Significant Byte):

• Header:

◦ Length: From MSB (with Tag field) to LSB

◦ Address: From MSB to LSB. This applies to eSPI transactions with address
including GET_CONFIGURATION and SET_CONFIGURATION.

Promira eSPI Analysis User Manual v1.10.000

12

• Data: From LSB to MSB

• Status: From LSB to MSB

Each of the bytes is shifted from the most significant bit (bit[7]) to the least significant bit
(bit[0]). An example of a master initiated peripheral channel memory read is as shown
below.

Table 2 : Transaction Example

7 6 5 4 3 2 1 0

0 Command Opcode[7:0]

1 Cycle Type[7:0]

2 Tag[3:0] Length[11:8]

3 Length[7:0]

4 Address[31:24]

5 Address[23:16]

6 Address[15:8]

7 Address[7 :0]

8 Data[7:0]

9
...
n

Data[15:8]
.
.
.

Command Phase CRC[7:0]

(Turn Around)

0 Response Opcode[7:0]

1 Cycle Type[7:0]

2 Tag[3:0] Length[11:8]

3 Length[7:0]

4 Address[31:24]

5 Address[23:16]

6 Address[15:8]

7 Address[7 :0]

8 Data[7:0]

9
...
n

Data[15:8]
.
.

Promira eSPI Analysis User Manual v1.10.000

13

Response Phase CRC[7:0]

Single IO mode

In Single I/O mode, I/O[1:0] pins are uni-directional. eSPI master drives the I/O[0] during
command phase, and response from slave is driven on the I/O[1].

Figure 8 : Single I/O Mode

Dual IO mode

In Dual I/O mode, I/O[1:0] pins become bi-directional to form the bi-directional data bus
and all the command and response phases are transferred over the two bi-directional
pins at the same time, effectively doubling the transfer rate of the Single I/O mode.

Promira eSPI Analysis User Manual v1.10.000

14

Figure 9 : Dual I/O Mode

Quad IO mode

In Quad I/O mode, I/O[3:0] pins are bi-directional data bus and all the command and
response phases are transferred over the four bi-directional pins at the same time,
effectively doubling the transfer rate of the Dual I/O mode.

Promira eSPI Analysis User Manual v1.10.000

15

Figure 10 : Quad I/O Mode

Promira eSPI Analysis User Manual v1.10.000

16

2.1.4 eSPI References

• eSPI – Intel Enhanced Serial Peripheral Interface Specification

• LPC – Intel Low Pin Count Specification

• SPI – Wikipedia Serial Peripheral Interface Description

Promira eSPI Analysis User Manual v1.10.000

17

https://downloadmirror.intel.com/22112/eng/327432-003_eSPI%20Specification%20rev0%2075%20_base%20specification_CB.pdf
http://www.intel.com/design/chipsets/industry/25128901.pdf
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

3 Hardware Specification

3.1 Pinout

3.1.1 Connector Specification

The Promira Serial Platform with eSPI Analysis Application target connector is a
standard 2x17 IDC male type connector 0.079x0.0792″ (2x2 mm). The Promira platform
target connector allows for up to a 34-pin ribbon cable and connector.

One 34-34 cable is provided with the Promira platform: A standard ribbon cable 0.0392″
(1 mm) pitch that is 5.122″ (130mm) long with two 2x17 IDC female 2x2mm
(0.079x0.079) connectors. This provided target ribbon cable will mate with a standard
keyed boxed header.

3.1.2 Orientation

The pin order of the 2x17 IDC female connector in the provided target ribbon 34-34
cable is described in figure 11. When looking at the Promira platform front position with
the 34-34 ribbon cable (figure 11), pin 1 is in the top left corner and pin 34 is in the
bottom right corner.

Figure 11 : Promira platform front position with 34-34 cable

3.1.3 Pin Description

Table 3 (1) : Pin Description - Target Connector

Pin Symbol Description

1 Alert0 Alert pin for slave 0

3 Alert1 Alert pin for slave 1

Promira eSPI Analysis User Manual v1.10.000

18

4 V Software configurable Vcc target power supply.
NC/3.3V/5V

5 IO1 eSPI IO 1

6 V Software configurable Vcc target power supply.
NC/3.3V/5V

7 SCK eSPI Clock

8 IO0 eSPI IO 0

9 CS0 eSPI Slave Select (Chip Select) 0

11 IO2 eSPI IO 2

13 IO3 eSPI IO 3

14 CS1 eSPI Slave Select (Chip Select) 1

15 Reset0 eSPI Reset Pin 0 (Master o Slaves)

17 DIO0 Software configurable digital input/output pin 0

19 DIO1 Software configurable digital input/output signal 1

20 DIO4 Software configurable digital input/output signal 4

21 DIO2 Software configurable digital input/output signal 2

22 V Software configurable Vcc IO level power supply.
NC/1.8V

23 DIO3 Software configurable digital input/output signal 3

24 V Software configurable Vcc IO level power supply.
NC/1.8V

25 DIO5 Software configurable digital input/output signal 5

26 DIO9 Software configurable digital input/output signal 9

27 DIO6 Software configurable digital input/output signal 6

29 DIO7 Software configurable digital input/output signal 7

31 Reset1 eSPI Reset pin 1 (Slave to Master)

32 DIO10 Software configurable digital input/output signal 10

33 DIO8 Software configurable digital input/output signal 8

2, 10, 12, 16, 18, 28,
30, 34

GND Ground Connection

Note:

(1) When the Promira platform monitors a system that does not use any or all of the
following signals: Pin 3 - Alert1, Pin 14 - CS1, and Pin 31 Reset1, it is strongly
recommended that these signals are left as No Connect (NC). If that is not possible, any
connected unused pins are required to have a logic level of 1 at all times.

Promira eSPI Analysis User Manual v1.10.000

TGT

TGT

IO

IO

19

3.2 LEDs

LED2 (the middle LED in the Promira platform upper side) is blinking red, when the
Promira platform data capture is active.

3.3 Speeds

The Promira platform with eSPI analysis application is capable of monitoring the eSPI
bus at bit rates 20, 25, 33, 50 and 66 MHz in single, dual, quad IO modes.

3.4 Digital I/O

Promira platform digital inputs allow users to synchronize external logic with the
analyzed eSPI data stream. When the state of an enabled digital input changes, an
event is sent to the analysis PC. Digital input may not oscillate at a rate faster than 10
MHz. If digital input oscillates at a rate faster 10 MHz, then the events may not be
passed to the PC. Digital inputs are rated for 1.8 V.

Promira platform digital outputs allow users to output events to external devices, such as
an oscilloscope or logic analyzer, especially to trigger the oscilloscope to capture data.
The digital outputs are rated to 1.8 V and 10 mA.

3.5 On-board Buffer

The Promira platform with eSPI analysis application contains a 64 MB on-board buffer.
The memory provides a temporary FIFO storage buffer for capture data. This buffer
serves two capture when the analysis computer can not stream the data off the analyzer
fast enough. It is also used during a delayed-download capture to store all of the
captured data.

Promira eSPI Analysis User Manual v1.10.000

20

4 Device Operation
Promira platform monitors the eSPI signals including: four IO signals, one SCK signal,
two CS signals, two Alert signals, and two Reset signals.

eSPI specification requires that the master and slaves start communicating in single IO
mode at 20 MHz on power-up and later on, the master configures the operating mode
based on the slaves capabilities. This is done by sending a SET_CONFIGURATION
command to the slaves 'General Capabilities Register' (offset 0x0008) with the desired
IO mode/Alert pin mode/frequency setting. Promira platform captures and remembers
the IO mode and Alert pin mode when it recognizes a SET_CONFIGURATION
command in offset 0x0008 to a slave. This is automatic as long as the Promira platform
captures all traffic from the beginning which is the recommended usage mode.
Alternately, eSPI IO mode can also be configured by the user to Single/Dual/Quad. eSPI
Alert mode can be configured by the user to IO1 signal or Alert0 signal.

4.1 Capture Mode

Promira platform has two main capture modes: standard capture mode and delayed-
download capture mode.

• In standard capture mode the capture data is streamed out from the Promira
platform to the analysis computer immediately.

• In delayed-download capture mode, the capture data is not streamed out from the
Promira platform to the analysis computer until after the analyzer has stopped
monitoring the bus. When the captured is stopped, all the captured data is
streamed from the analyzer to the analysis computer.

4.2 General Device Features

Promira platform supports multiple monitoring, decoding, and reporting capabilities
including:

• Monitors and decodes packets at eSPI protocol level and distinguish between
command phase and response phase while reporting the packet to the user.

• Monitors SET_CONFIGURATION command to 'General Capabilities Register'
and automatically remember the frequency of operation and IO mode configured
by the master and reports it for every packet seen on the bus.

• Monitors SET_CONFIGURATION command to 'General Capabilities Register'
and automatically remember Alert mode setting and appropriately monitors IO1

Promira eSPI Analysis User Manual v1.10.000

21

signal or Alert-0/Alert-1 signals (which is applicable only in a single master - single
slave setting).

• Monitors SET_CONFIGURATION command to 'Channel Capabilities Registers'
and automatically remember the master configurable fields (for example
maximum payload request and maximum payload size for peripheral channel
transactions).

• Monitors the status field returned in every response and remember the queues'
availability status for all channels.

• Decodes commands based on channels and reports the information to the user
for every packet.

• Reports correct/incorrect command phase and response phase CRC errors for
every packet to the user.

• Reports Master side errors and Slave side errors.

• Resets the captured IO mode and frequency of operation on a reset toggle on the
signal.

4.3 Digital IO

The Promira platform has 11 digital IO signals that can be configured by the user to input
or output. Digital inputs provide a means to users to insert events into the data stream.
Digital outputs provide a means for users to match certain events and to send output to
other devices, such as oscilloscopes. In this way, users can synchronize events on the
bus with other signals they may be measuring. Digital input event (failing edge or rising
edge) can trigger a capture. Digital output behavior can be configured to: set low, set
high, toggle (initially low), and toggle (initially high).

Digital input event can trigger a capture, and capture event can toggle digital output on
the following scenarios:

• Packet with a command field that matches an 8-bit value set by the user.

• Packet with a command field that does not match an 8-bit value set by the user.

• Peripheral channel transaction.

• Virtual wire channel transaction.

• OOB channel transaction.

• Flash channel transaction.

• Get Configuration command.

• Set Configuration command.

Promira eSPI Analysis User Manual v1.10.000

22

• Get Status command.

• Platform Reset command.

• Alert event on the eSPI bus.

• Reset event on the eSPI bus.

4.4 Match/Action System

The Promira platform features a multi-tiered matching/action system that can perform
one or more actions in response to a match/action.

The first level is simple matching which can match the occurrence of packet types by
channel, user selected command value and events and trigger a capture and/or assert
an external output pin in response.

The second level is advanced matching which provides three different options that are
explained below. On a match the system can trigger a capture and/or assert an external
output pin in response.

The third level is hardware filters which provides mechanism to filter out packets.

Simple match and advanced match are separates features. The user can select simple
match feature or advanced match feature but not both features at the same time.

4.4.1 eSPI Simple Match

Simple match can trigger a capture, and capture event can toggle a digital output pin on
the following scenarios:

• Packet with a command field that matches an 8-bit value set by the user.

• Packet with a command field that does not match an 8-bit value set by the user.

• Peripheral channel transaction.

• Virtual wire channel transaction.

• OOB channel transaction.

• Flash channel transaction.

• Independent Channel Transaction

• Alert event on the eSPI bus.

• Reset event on the eSPI bus.

Promira eSPI Analysis User Manual v1.10.000

23

It is possible to select multiple events to match the simple trigger. However, since a
capture can only be triggered once, in the case of multiple selected events, the first of
any of the selected events will trigger the capture.

When an ouput pin is selcted to be asserted on a match, the pin will be asserted only
once, when the trigger occurs.

4.4.2 eSPI Advanced Match

The Promira eSPI advanced trigger is a complex pattern/sequence match engine that
provides triggering on specific condition/sequence of events on the eSPI bus with
multiple options and a high level of configurability specifically tailored around the eSPI
protocol.

Using the advanced match feature, the user can specify and configure the analyzer to
match and trigger on three different types of conditions/sequences based on eSPI
packets.

Match/Trigger Option 1 - Multiple Packets

Configure the analyzer to match and trigger on a sequence of up to four eSPI packets
(each packet is defined as a level). The match condition can be different for each level.
An output trigger pin can be configured to be drive logic high or low (selectable) for each
level when an eSPI packet satisfies that level's match condition.

Match/Trigger Option 2 - Non-Posted Transactions

Configure the analyzer to match and trigger on a specific non-posted transaction and
corresponding completion(s). A non-posted transaction has two distinct phases, a
request phase and one or more completion phases. Completions can be successful/
unsuccessful, and connected or split across multiple completion packets. In the case of
split completions the analyzer will track first, middle, last (only) completions as defined in
the eSPI specification. An output trigger pin can be configured to be drive logic high or
low (selectable) at different stages of the request/completion sequence as they occur on
the wire. The four distinct stages are 1- Request, 2-First completion, 3-Middle completion
(the first packet in case there are multiple middle completion packets), and 4-Last (Only)
completion. Please note that the user only needs to configure the analyzer to match a
specific non-posted request and the type of completion to look for (successful/
unsuccessful); the analyzer tracks the completion(s) for the request automatically.

Match/Trigger Option 3 - Errors

Configure the analyzer to match and trigger on a packet that has an error code in its
status as defined in Table 30

Promira eSPI Analysis User Manual v1.10.000

24

4.4.3 eSPI Hardware filters

The eSPI hardware filter feature provides mechanism to filter out packets (which are
listed below) in order to discard unwanted data, and reduce the amount of captured data
that is sent back to the analysis computer. The settings can be configured independently
for each slave.

• Packet with a command field that matches an 8-bit value set by the user.

• Packet with a command field that does not match an 8-bit value set by the user.

• Peripheral channel transaction.

• Virtual wire channel transaction.

• OOB channel transaction.

• Flash channel transaction.

• Independent Channel Transaction

4.5 Hardware Statistics

The Promira platform features hardware statistics which provides a count of packets /
events for each slave. The following counters are available:

• Packets with command CRC error.

• Packets with response CRC error.

• Peripheral channel packets.

• Virtual wire channel packets.

• OOB channel packets.

• Flash channel packets.

• Get Configuration packets.

• Set Configuration packets.

• Get Status packets.

• Platform Resets.

• All packets that were filtered out

• All packets that were filtered out based on command

Promira eSPI Analysis User Manual v1.10.000

25

5 Software

5.1 Rosetta Language Bindings: API Integration into
Custom Applications

5.1.1 Overview

The Promira Rosetta language bindings make integration of the Promira API into custom
applications simple. Accessing Promira functionality simply requires function calls to the
Promira API. This API is easy to understand, much like the ANSI C library functions,
(e.g., there is no unnecessary entanglement with the Windows messaging subsystem
like development kits for some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different
Rosetta bindings are included in the software download package available on the Total
Phase website. Currently the following languages are supported: C/C++, C#, VB,
Python. Next, follow the instructions for each language binding on how to integrate the
bindings with your application build setup. As an example, the integration for the C
language bindings is described below. (For information on how to integrate the bindings
for other languages, please see the example code available for download on the Total
Phase website.)

1. Include the promira.h and promana.h files in any C or C++ source module.
The module may now use any API call listed in promira.h and promana.h.

2. Compile and link promira.c and promana.c with your application. Ensure that
the include path for compilation also lists the directory in which promira.h and
promana.h is located if the two files are not placed in the same directory.

3. Place the Promira DLL (promira.dll), included with the API software package, in
the same directory as the application executable or in another directory such that
it will be found by the previously described search rules.

5.1.2 Versioning

Since a new Promira DLL can be made available to an already compiled application, it is
essential to ensure the compatibility of the Rosetta binding used by the application
against the DLL loaded by the system. A system similar to the one employed for the
DLL-Firmware cross-validation is used for the binding and DLL compatibility check.

Here is an example.

 DLL v1.20: compatible with Binding >= v1.10

Promira eSPI Analysis User Manual v1.10.000

26

 Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return
an error code, PA_APP_INCOMPATIBLE_LIBRARY.

5.1.3 Customizations

While provided language bindings stubs are fully functional, it is possible to modify the
code found within this file according to specific requirements imposed by the application
designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a specific paradigm. See the comments in promira.c for more details.

Promira eSPI Analysis User Manual v1.10.000

27

6 API Documentation

6.1 Introduction

The Promira API documentation that follows is oriented toward the Promira Rosetta C
bindings. The set of Promira API functions and their functionality is identical regardless
of which Rosetta language binding is utilized. The only differences will be found in the
calling convention of the functions. For further information on such differences please
refer to the documentation that accompanies each language bindings in the Promira API
Software distribution

6.2 General Data Types

The following definitions are provided for convenience. All Promira data types are
unsigned.

 typedef unsigned char u08;
 typedef unsigned short u16;
 typedef unsigned int u32;
 typedef unsigned long long u64;
 typedef signed char s08;
 typedef signed short s16;
 typedef signed int s32;
 typedef signed long long s64;
 typedef float f32;

6.3 Notes on Status Codes

Most of the Promira API functions can return a status or error code back to the caller.
The complete list of status codes is provided at the end of this chapter. All of the error
codes are assigned values less than 0, separating these responses from any numerical
values returned by certain API functions.

Each API function can return one of two error codes with regard to the loading of the
underlying Promira DLL, PA_APP_UNABLE_TO_LOAD_LIBRARY and
PA_APP_INCOMPATIBLE_LIBRARY. If these status codes are received, refer to the
previous sections in this manual that discuss the DLL and API integration of the Promira
software. Furthermore, all API calls can potentially return the error
PA_APP_UNABLE_TO_LOAD_FUNCTION. If this error is encountered, there is likely a
serious version incompatibility that was not caught by the automatic version checking
system. Where appropriate, compare the language binding versions (e.g.,
PM_HEADER_VERSION found in promira.h and PM_CFILE_VERSION found in
promira.c or PA_APP_HEADER_VERSION found in promana.h and

Promira eSPI Analysis User Manual v1.10.000

28

PA_APP_CFILE_VERSION found in promana.c) to verify that there are no mismatches.
Next, ensure that the Rosetta language binding (e.g., promira.c and promira.h or
promana.c and promana.h) are from the same release as the Promira DLL. If all of
these versions are synchronized and there are still problems, please contact Total Phase
support for assistance.

Any API function that accepts any type of handle can return the error
PA_APP_INVALID_HANDLE if the handle does not correspond to a valid instance that
has already been opened or created. If this error is received, check the application code
to ensure that the open or create command returned a valid handle and that this handle
is not corrupted before being passed to the offending API function.

Finally, any function call that communicates with an Promira device can return the error
PA_APP_COMMUNICATION_ERROR. This means that while the handle is valid and the
communication channel is open, there was an error receiving the acknowledgment
response from the Promira application. The error signifies that it was not possible to
guarantee that the connected Promira device has processed the host PC request,
though it is likely that the requested action has been communicated to the Promira
device and the response was lost.

These common status responses are not reiterated for each function. Only the error
codes that are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed
following the API documentation.

6.4 Application Management Interface

All functions starting with pm_ are for Application Management. Please refer to the
Promira Serial general user manual for the details.

6.5 General Application Interface

6.5.1 General Application

Overview

After opening the device with pm_open and starting an application with pm_load, a
connection needs to be established with pa_app_connect. See the language specific
sample programs for examples of this connection process.

Promira eSPI Analysis User Manual v1.10.000

29

Software Operational Overview

There are a series of steps required for a successful capture. These steps are handled
by the Data Center software automatically, but must be explicitly followed by an
application programmer wishing to write custom software. The following is meant to
provide a high-level overview of the operation of the Promira platform.

1. Determine the IP address of the Promira platform. The function
pm_find_devices returns a list of IP addresses for all Promira platforms that
are attached to the analysis computer.

2. Obtain a Promira connection handle by calling the function pa_app_connect on
the appropriate IP addresses. All other software operations are based on this
handle.

3. Configure the Promira platform as necessary. The API documentation provides
complete details about the different configurations.

4. Start the capture by calling the function pa_capture_start.

5. Retrieve monitored data by using the read functions that are appropriate for the
monitored bus type. There are different functions available for retrieving additional
data such as byte- and bit-level timing.

6. End the capture by calling the function pa_capture_stop. At this point the
capture is stopped, and no new data can be obtained. Captured data may still be
read from the on-board buffer after calling this function.

7. Close the Promira platform handle with the function pa_app_disconnect.

If the Promira platform is disabled and then re-enabled it does not need to be re-
configured. However, upon closing the handle, all configuration settings will be lost.

Example code is available for download from the Total Phase website. These examples
demonstrate how to perform the steps outline above for each of the serial bus protocols
supported.

Connect to the Application (pa_app_connect)

 PromiraConnectionHandle pa_app_connect (const char * net_addr)

Connect to the application launched by pm_load.

Arguments

net_addr The net address of the Promira Serial Platform. It could be
an IPv4 address or a host name.

Promira eSPI Analysis User Manual v1.10.000

30

Return Value

This function returns a connection handle, which is guaranteed to be greater than
zero if valid.

Specific Error Codes

PA_APP_UNABLE_TO_OPEN Unable to connect to the application.

Details

Only one connection can be made to the application.

Disconnect to the Application (pa_app_disconnect)

 int pa_app_disconnect (PromiraConnectionHandle conn)

Disconnect to the application.

Arguments

conn handle of the connection

Return Value

The number of the connections to applications disconnected is returned on success.
This will usually be 1.

Specific Error Codes

None.

Details

If the conn argument is zero, the function will attempt to disconnect all possible
handles, thereby disconnecting all connected handles. The total number of handle
disconnected is returned by the function.

Version (pa_app_version)

 int pa_app_version (PromiraConnectionHandle conn,
 PromiraAppVersion * version);

Return the version matrix for the application connected to the given handle.

Arguments

conn handle of the connection

Promira eSPI Analysis User Manual v1.10.000

31

version pointer to pre-allocated structure

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

The PromiraAppVersion structure describes the various version dependencies of
application components. It can be used to determine which component caused an
incompatibility error.

 struct PromiraAppVersion {
 /* Software, firmware, and hardware versions. */
 u16 software;
 u16 firmware;
 u16 hardware;

 /* FW requires that SW must be >= this version. */
 u16 sw_req_by_fw;

 /* SW requires that FW must be >= this version. */
 u16 fw_req_by_sw;

 /* API requires that SW must be >= this version. */
 u16 api_req_by_sw;
 };

If the handle is 0 or invalid, only software, fw_req_by_sw, and api_req_by_sw
version are set.

Status String (pa_app_status_string)

 const char *pa_app_status_string (int status);

Return the status string for the given status code.

Arguments

status status code returned by a Promira application function.

Promira eSPI Analysis User Manual v1.10.000

32

Return Value

This function returns a human readable string that corresponds to status. If the code
is not valid, it returns a NULL string.

Specific Error Codes

None.

Details

None.

Get Features (pa_app_features)

 int pa_app_features (PromiraConnectionHandle conn);

Return the device features as a bit-mask of values, or an error code if the handle is not
valid.

Arguments

conn handle of the connection

Return Value

The features of the Promira platform are returned. These are a bit-mask of the
following values.

 #define PA_FEATURE_NONE (0)
 #define PA_FEATURE_ESPI (1<<0)

Specific Error Codes

None.

Details

Promira eSPI Analysis User Manual v1.10.000

33

None.

6.5.2 Configuration

Target Power (pa_phy_target_power)

 int pa_phy_target_power (PromiraConnectionHandle conn,
 u08 power_mask);

Activate/deactivate target power pins 4, 6 and/or 22, 24.

Arguments

conn handle of the connection

power_mask enumerated values specifying power pin state. See Table 4.

Table 4 : power_mask enumerated types

PA_PHY_TARGET_POWER_NONE Disable target power pins 4, 6, 22, 24. Pins 4, 6, 22, 24
at GND level.

PA_PHY_TARGET_POWER_TGT1_5V Enable 5V on target power pins 4 and 6.

PA_PHY_TARGET_POWER_TGT1_3V Enable 3.3V on target power pins 4 and 6.

PA_PHY_TARGET_POWER_TGT2 Enable target power pins 22 and 24 with the same
voltage as the all signals voltage level as programed by
API function pa_phy_level_shift. The all logic level
can be programed to 0.9V to 3.45V. The precision level
of the level shifter is approximately 0.015V. For the
Promira platform with eSPI Analysis application the only
available voltage is 1.8V.

PA_PHY_TARGET_POWER_BOTH Enable 5V on target power pins 4 and 6, and enable
target power pins 22 and 24 with the same voltage as
the all signals voltage level as programed by API
function pa_phy_level_shift.

PA_PHY_TARGET_POWER_QUERY Queries the target power pin state.

Return Value

The current state of the target power pins will be returned. The configuration will be
described by the same values as in the table above.

Specific Error Codes

Promira eSPI Analysis User Manual v1.10.000

34

None.

Details

None.

Level Shift (pa_phy_level_shift)

 f32 pa_phy_level_shift (PromiraConnectionHandle conn,
 f32 level);

Shift the logic level for all signal pins including target power pin 22 and 24.

Arguments

conn handle of the connection

level logic level from 0.9V to 3.45V

Return Value

The Actual logic level on the Promira host adapter will be returned.

Specific Error Codes

None.

Details

The call with PA_PHY_LEVEL_SHIFT_QUERY returns existing configuration and
does not modify.

For Promira platform with eSPI analysis application, the logic level of all signal is
fixed to 1.8V.

6.5.3 Monitoring API

Start Capture (pa_capture_start)

 int pa_capture_start (PromiraConnectionHandle conn,
 PromiraProtocol protocol,
 PromiraTriggerMode trig_mode);

Start monitoring packets on the selected interface.

Promira eSPI Analysis User Manual v1.10.000

35

Arguments

conn handle of the connection

protocol enumerated values specifying the protocol to monitor
(see Table 5)

trig_mode enumerated values specifying the trigger mode (see
Table 6)

Table 5 : PromiraProtocol enumerated values

PA_PROTOCOL_NONE No Protocol

PA_PROTOCOL_ESPI eSPI Protocol

Table 6 : PromiraTriggerMode enumerated values

PA_TRIGGER_MODE_EVENT Trigger on match event

PA_TRIGGER_MODE_IMMEDIATE Trigger immediately

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

PA_APP_FUNCTION_NOT_AVAILABLE The connected Promira
platform does not support
capturing for the requested
protocol.

PA_APP_UNKNOWN_PROTOCOL A protocol was requested that
does not appear in the
enumeration detailed in Table
5.

Details

This function enables monitoring on the given Promira platform. See the section on
the protocol-specific APIs. Functions for retrieving the capture data from the Promira
platform are described therein.

Trigger Capture (pa_capture_trigger)

 int pa_capture_trigger (PromiraConnectionHandle conn);

Promira eSPI Analysis User Manual v1.10.000

36

Trigger the capture.

Arguments

conn handle of the connection

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

Calling this function triggers the capture. Once the capture has been triggered, data
can be downloaded from the on-board buffer by calling the read function.

This triggers only when the capture started with PA_TRIGGER_MODE_EVENT as
trig_mode.

Wait for Capture to Trigger (pa_capture_trigger_wait)

 int pa_capture_trigger_wait (PromiraConnectionHandle conn,
 int timeout_ms,
 PromiraCaptureStatus * status);

Wait for the capture to trigger.

Arguments

conn handle of the connection

timeout_ms timeout value

status filled with enumerated value described in Table 7
Table 7 : PromiraCaptureStatus Enums

PA_CAPTURE_STATUS_INACTIVE Capture is not active

PA_CAPTURE_STATUS_PRE_TRIGGER Filling pre-trigger

PA_CAPTURE_STATUS_PRE_TRIGGER_SYNC Downloading pre-trigger

PA_CAPTURE_STATUS_POST_TRIGGER Filling post-trigger

PA_CAPTURE_STATUS_TRANSFER Capture stopped, downloading data

PA_CAPTURE_STATUS_COMPLETE Capture stopped, all data downloaded

Return Value

Promira eSPI Analysis User Manual v1.10.000

37

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

This function will block while the capture is in the pre-trigger state or until
timeout_ms milliseconds have passed.

Stop Capture (pa_capture_stop)

 int pa_capture_stop (PromiraConnectionHandle conn);

Stop capturing data.

Arguments

conn handle of the connection

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

Captured data may still be read from the on-board buffer after calling this function,
but new data will not be monitored.

Query Capture Status (pa_capture_status)

 int pa_capture_status (PromiraConnectionHandle conn,
 PromiraCaptureStatus * status,
 PromiraCaptureBufferStatus * buf_status);

Query the status of capture.

Arguments

conn handle of the connection

status filled with enumerated value described in Table 7

buf_status filled with buffer status described in Table 8

Promira eSPI Analysis User Manual v1.10.000

38

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

Query the capture status and the states of the trigger and capture buffers.

When on-board capture buffer gets full, the analyzer will stop capturing new data
while allowing all of the previously captured data to be downloaded. The
PA_CAPTURE_STATUS_TRANSFER will indicate that the capture has stopped
because the buffer became *full* or stopped by pa_capture_stop; previous data
is still available for download. capture_remaining (to be downloaded) will return
the amount currently in the on-board buffer.

The PromiraCaptureBufferStatus structure shows the current status of on-
board capture buffer.

 struct PromiraCaptureBufferStatus {
 u32 pretrig_remaining_kb;
 u32 pretrig_total_kb;
 u32 capture_remaining_kb;
 u32 capture_total_kb;
 };

Table 8 : PromiraCaptureBufferStatus field descriptions

pretrig_remaining_kb filled with amount of remaining pre-trigger
data to capture (in KB)

pretrig_total_kb filled with pre-trigger size set by user (in KB)

capture_remaining_kb filled with amount of remaining total capture
data to capture (in KB)

capture_total_kb filled with total capture size set by user
(in KB)

Configure Capture Buffer (pa_capture_buffer_config)

 int pa_capture_buffer_config (PromiraConnectionHandle conn,
 u32 pretrig_kb,

Promira eSPI Analysis User Manual v1.10.000

39

 u32 capture_kb);

Configure on-board capture buffer.

Arguments

conn handle of the connection

pretrig_kb amount (in KB) of pre-trigger data to capture

capture_kb total amount (in KB) of data to capture

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

PA_APP_CONFIG_ERROR An attempt was made to set an invalid
configuration.

Details

The hardware buffer may vary on the application and the license. It is specified in
the license.

The size of capture_kb includes pretrig_kb. Attempting to set pretrig_kb
greater than capture_kb will return an error.

The on-board buffer for pre-trigger data is circular queue which means it keeps last
data before trigger happens. When it gets full but trigger doesn't happen yet, oldest
data will be gone.

When the on-board capture buffer gets full, it will automatically stops monitoring.
The data already monitored is still available for download.

For Promira platform with eSPI analysis application, each packet takes 8K fixed
buffer size no matter how big actual data is.

Query Capture Buffer Config (pa_capture_buffer_config_query)

 int pa_capture_buffer_config_query (
 PromiraConnectionHandle conn,
 u32 * pretrig_kb,
 u32 * capture_kb);

Query the current on-board capture buffer configuration.

Arguments

Promira eSPI Analysis User Manual v1.10.000

40

conn handle of the connection

pretrig_kb filled with pre-trigger size (in KB)

capture_kb filled with total capture size (in KB)

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

Query the on-board capture buffer configuration set in
pa_capture_buffer_config.

6.5.4 Digital I/O Functions

Configure Digital I/O (pa_digital_io_config)

 int pa_digital_io_config (PromiraConnectionHandle conn,
 u32 enable,
 u32 direction,
 u32 polarity);

Configure digital I/O.

Arguments

conn handle of the connection

enable a bitmask specifying which digital I/O should be enabled.

direction a bitmask of the direction of the digital I/O. If a digital I/O's bit
is 0 (PA_DIGITAL_DIR_INPUT), the digital I/O is configured
as an input. Otherwise it will be an output.

polarity a bitmask of the polarity of the digital I/O. If a digital I/O's bit is
0 (PA_DIGITAL_ACTIVE_LOW), the digital I/O is active low.
Otherwise it will be active high.

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Promira eSPI Analysis User Manual v1.10.000

41

Details

The number of digital IOs may vary on the application and the license. It is specified
in the license.

Promira platform with eSPI analysis application supports up to 11 digital I/Os.

Query Digital I/O Config (pa_digital_io_config_query)

 int pa_digital_io_config_query (PromiraConnectionHandle conn,
 u32 * enable,
 u32 * direction,
 u32 * polarity);

Query the current digital IOs configuration.

Arguments

conn handle of the connection

enable a bitmask specifying which digital IOs are enabled.

direction a bitmask of the direction of the digital I/O.

polarity a bitmask of the polarity of the digital I/O.

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

None

6.5.5 Notes on Protocol-Specific Read Functions

All read functions return a timestamp, a duration, a status, and an event value through
the PromiraReadInfo parameter.

 struct PromiraReadInfo {
 u64 timestamp;
 u64 duration;
 u32 status;
 u32 events;

Promira eSPI Analysis User Manual v1.10.000

42

 };

Table 9 : PromiraReadInfo structure

timestamp filled with the timestamp when the packet or the events begins. This is the number
of nanoseconds from where capture started and will be reset to 0 when
pa_capture_start gets called.

duration filled with the number of nanoseconds that the packet or the events actually took.

status filled with the status bitmask as detailed in Tables 10.
See also Table 13 for eSPI.

events filled with the events bitmask as detailed in Tables 11.
See also Table 14 for eSPI.

Table 10 : Read Status definitions

PA_READ_OK 0x00000000 Read successful

PA_READ_ERR_CODE_MASK 0x000000ff Mask for the protocol specific error code

Table 11 : Read Events definitions

PA_EVENT_DIGITAL_INPUT_MASK 0x00000fff Mask for the bitmask of digital inputs

PA_EVENT_DIGITAL_INPUT 0x00001000 Digital input event

PA_EVENT_SLAVE_ID_MASK 0xf0000000 Mask for the index of slave

PA_EVENT_SLAVE0 0x00000000 Event from slave 0

PA_EVENT_SLAVE1 0x10000000 Event from slave 1

PA_EVENT_SLAVE2 0x20000000 Event from slave 2

PA_EVENT_SLAVE3 0x30000000 Event from slave 3

Each match parameter is represented by two separate fields: type and value. The
PromiraMatchType enumerated type is used to determine whether a connection value
field should be disabled, match on equal, or match on not equal. The different
enumerated values are listed below. Restrictions on usage are indicated by footnotes.

Table 12 : PromiraMatchType enumerated values

PA_MATCH_TYPE_DISABLED 0 Disable

PA_MATCH_TYPE_EQUAL 1 Matched when field is equal to the given value

PA_MATCH_TYPE_NOT_EQUAL 2 Matched when field is not equal to the given value

Promira eSPI Analysis User Manual v1.10.000

43

6.6 eSPI API

6.6.1 Notes

The eSPI API functions are only available for the Promira platform with eSPI Analysis
Application.

Table 13 : Read Status for eSPI definitions

The Source and Fatalness of Error

PA_READ_ESPI_ERR_TYPE_MASK 0x000000c0 Mask for the source of the
error

PA_READ_ESPI_ERR_TYPE_MASTER 0x00000080 Error reported from master

PA_READ_ESPI_ERR_TYPE_SLAVE 0x00000040 Error reported from slave

PA_READ_ESPI_ERR_TYPE_MISC 0x000000c0 Miscellaneous error

PA_READ_ESPI_ERR_FATAL_MASK 0x00000020 Mask for fatal error and
non-fatal error

Master Error Code

PA_READ_ESPI_MST_INVALID_RSP_CODE 0x000000a0 Invalid Response Code
(FATAL)
Response code is not part
of the specification

PA_READ_ESPI_MST_INVALID_CYCLE_TYPE 0x000000a1 Invalid Cycle Type (FATAL)
Cycle type in the response
phase is not part of the
specification

PA_READ_ESPI_MST_NO_RSP 0x000000a3 Response Code: No
Response (FATAL)
Response code is all
bitwise 1

PA_READ_ESPI_MST_RSP_FATAL 0x000000a4 Response Code: Fatal
Error (FATAL)
Response code indicates
fatal error

PA_READ_ESPI_MST_PERIF_PAYLOAD 0x000000a5 Peripheral Channel
(Payload length > Max
Payload Size): Fatal Error
(FATAL)

Promira eSPI Analysis User Manual v1.10.000

44

PA_READ_ESPI_MST_PERIF_REQ_SIZE 0x000000a6 Peripheral Channel (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_MST_PERIF_4K_XING 0x000000a7 Peripheral Channel
(Address + Length crossing
4K boundary): Fatal Error
(FATAL)

PA_READ_ESPI_MST_VW_MAX_COUNT 0x000000a8 Virtual Wire Channel
(Count > Max virtual wire
count): Fatal Error (FATAL)

PA_READ_ESPI_MST_OOB_PAYLOAD 0x000000a9 OOB Channel (SMBus Byte
Count > Max Payload
Size): Fatal Error (FATAL)

PA_READ_ESPI_MST_FLASH_PAYLOAD 0x000000aa Flash Access Channel
(Payload length > Max
Payload Size): Fatal Error
(FATAL)

PA_READ_ESPI_MST_FLASH_REQ_SIZE 0x000000ab Flash Access Channel
(Read request size > Max
read request size): Fatal
Error (FATAL)

PA_READ_ESPI_MST_PERIF_PAYLOAD_SIZE 0x000000ad Peripheral Channel
(Payload length > Max
Payload Size) and (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_MST_FLASH_PAYLOAD_SIZE 0x000000ae Flash Access Channel
(Payload length > Max
Payload Size) and (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_MST_RSP_NON_FATAL 0x00000080 Response Code: Non Fatal
Error (NON_FATAL)
Response code indicates
non-fatal error

Slave Error Code

Promira eSPI Analysis User Manual v1.10.000

45

PA_READ_ESPI_SLV_PUT_WO_FREE 0x00000060 PUT without FREE
(FATAL)
Slave receives the PUT
command through channel
which doesn't have free
queue for posted
commands

PA_READ_ESPI_SLV_GET_WHEN_UNAVAIL 0x00000061 GET without AVAIL
(FATAL)
Slave receives the GET
command without any
indication by the slave that
it has data available

PA_READ_ESPI_SLV_PERIF_PAYLOAD 0x0000006a Peripheral Channel
(Payload length > Max
Payload Size): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_PERIF_REQ_SIZE 0x00000062 Peripheral Channel (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_PERIF_4K_XING 0x00000063 Peripheral Channel
(Address + Length crossing
4K boundary): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_VW_MAX_COUNT 0x00000064 Virtual Wire Channel
(Count > Max virtual wire
count): Fatal Error (FATAL)

PA_READ_ESPI_SLV_OOB_PAYLOAD 0x00000065 OOB Channel (SMBus Byte
Count > Max Payload
Size): Fatal Error (FATAL)

PA_READ_ESPI_SLV_FLASH_PAYLOAD 0x00000066 Flash Access Channel
(Payload length > Max
Payload Size): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_FLASH_REQ_SIZE 0x00000067 Flash Access Channel
(Read request size > Max
read request size): Fatal
Error (FATAL)

Promira eSPI Analysis User Manual v1.10.000

46

PA_READ_ESPI_SLV_PERIF_PAYLOAD_SIZE 0x00000068 Peripheral Channel
(Payload length > Max
Payload Size) and (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_FLASH_PAYLOAD_SIZE 0x00000069 Flash Access Channel
(Payload length > Max
Payload Size) and (Read
request size > Max read
request size): Fatal Error
(FATAL)

PA_READ_ESPI_SLV_INVALID_CMD 0x00000040 Invalid Command (NON
FATAL)
Command value is not
defined in the specification

PA_READ_ESPI_SLV_INVALID_CYCLE_TYPE 0x00000041 Invalid Cycle Type (NON
FATAL)
Cycle type in the command
phase is not part of the
specification

Miscellaneous Error Code

PA_READ_ESPI_PARTIAL_BYTE 0x000000e0 Number of data bits is not a
multiple of 8

PA_READ_ESPI_RESET_WHILE_CS 0x000000e1 Reset# asserted while CS#
is asserted

PA_READ_ESPI_ALERT_WHILE_CS 0x000000e2 Alert#(IO1) asserted while
CS# is asserted

PA_READ_ESPI_INVALID_LENGTH 0x000000e3 Invalid eSPI packet length

PA_READ_ESPI_MORE_THAN_ONE_CS 0x000000e4 More than one chip select
active at the same time

Error Bitmasks

PA_READ_ESPI_ERR_BAD_CMD_CRC 0x00000100 Bad CRC for command

PA_READ_ESPI_ERR_BAD_RSP_CRC 0x00000200 Bad CRC for response

Table 14 : Read Events for eSPI definitions

PA_EVENT_ESPI_ALERT_RISING 0x00010000 Alert on rising edge

PA_EVENT_ESPI_ALERT_FALLING 0x00020000 Alert on falling edge

PA_EVENT_ESPI_RESET_RISING 0x00040000 Reset on rising edge

PA_EVENT_ESPI_RESET_FALLING 0x00080000 Reset on falling edge

Promira eSPI Analysis User Manual v1.10.000

47

PA_EVENT_ESPI_INBAND_RESET 0x00100000 In-band reset

PA_EVENT_ESPI_PACKET 0x00200000 eSPI packet

6.6.2 eSPI Monitor Interface

Set Operating Configuration (pa_espi_operating_config)

 int pa_espi_operating_config
 (PromiraConnectionHandle conn,
 u08 slave_id,
 const PromiraEspiOperatingCfg * cfg);

Set the operating configuration of eSPI system.

Arguments

conn handle of the connection

slave_id id of slave

cfg configuration described in Table 15

Table 15 : PromiraEspiOperatingCfg field descriptions

io_mode SPI IO mode to monitor described in Table 16

alert_pin Alert pin to monitor described in Table 17

perif_max_req_size Max read request size for peripheral channel described in Table 18

perif_max_payload Max payload size for peripheral channel described in Table 18

vw_max_count Max virtual wire count

oob_max_payload Max payload size for OOB channel described in Table 18

flash_max_req_size Max read request size for flash channel described in Table 18

flash_max_payload Max payload size for flash channeldescribed in Table 18
Table 16 : PromiraSpiIOMode enumerated values

PA_SPI_IO_UNKNOWN -1 Unknown

PA_SPI_IO_STANDARD 0 Standard SPI

PA_SPI_IO_DUAL 2 Dual SPI

PA_SPI_IO_QUAD 4 Quad SPI

Table 17 : PromiraEspiAlertPin enumerated values

Promira eSPI Analysis User Manual v1.10.000

48

PA_ESPI_ALERT_UNKNOWN 0 Enumerated alert pin to monitor

PA_ESPI_ALERT_PIN 1 The designated alert pin

PA_ESPI_ALERT_IO1 2 IO1 pin for alert to monitor

Table 18 : PromiraEspiAlign enumerated values

PA_ESPI_ALIGN_UNKNOWN 0 Undefined or enumerated value

PA_ESPI_ALIGN_64_BYTES 1 64 bytes

PA_ESPI_ALIGN_128_BYTES 2 128 bytes

PA_ESPI_ALIGN_256_BYTES 3 256 bytes

PA_ESPI_ALIGN_512_BYTES 4 512 bytes

PA_ESPI_ALIGN_1024_BYTES 5 1024 bytes

PA_ESPI_ALIGN_2048_BYTES 6 2048 bytes

PA_ESPI_ALIGN_4096_BYTES 7 4096 bytes

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

The maximum payload size for any channel can be up to 256 bytes

The maximum virtual wire count is a 0-based count which 0 means 1.

PA_ESPI_ALERT_IO1 for the alert pin can be assigned for slave 0. In eSPI
specification, IO1 can be used as the alert pin when there is only on slave.

Read Operating Configuration (pa_espi_operating_config_read)

 int pa_espi_operating_config_read (
 PromiraConnectionHandle conn,
 u08 slave_id,
 PromiraEspiOperatingCfg * cfg);

Read the operating configuration that eSPI system is using.

Arguments

Promira eSPI Analysis User Manual v1.10.000

49

conn handle of the connection

slave_id id of slave.

cfg filled with values described in Table 15

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

None

Read eSPI (pa_espi_read)

 int pa_espi_read (PromiraConnectionHandle conn,
 PromiraReadInfo * info,
 PromiraEspiPacketInfo * pkt_info,
 u32 max_bytes,
 u08 * packet);

Read eSPI data from the analyzer.

Arguments

conn handle of the connection

info filled with values described in Table 9

pkt_info filled with values described in Table 19

max_bytes maximum number of data bytes to read

packet an allocated array of u08 which is filled with the received data
Table 19 : PromiraEspiPacketInfo structure

channel logical channel the packet sent over, described in Table 20

enum_freq enumerated frequency described in Table 21

io_mode SPI IO mode described in Table 16

length the length of captured packet

cmd_length the length of command phase of packet including CRC

Table 20 : PromiraEspiChannel enumerated values

Promira eSPI Analysis User Manual v1.10.000

50

PA_ESPI_CHANNEL_UNKNOWN -1 Unknown channel

PA_ESPI_CHANNEL_PERIF 0 Peripheral

PA_ESPI_CHANNEL_VW 1 Virtual Wire

PA_ESPI_CHANNEL_OOB 2 OOB

PA_ESPI_CHANNEL_FLASH 3 Flash

PA_ESPI_CHANNEL_INDEP 4 Channel-Independent

Table 21 : PromiraEspiEnumFreq enumerated values

PA_ESPI_ENUM_FREQ_UNKNOWN -1 Unknown

PA_ESPI_ENUM_FREQ_20M 0 20 MHz

PA_ESPI_ENUM_FREQ_25M 1 25 MHz

PA_ESPI_ENUM_FREQ_33M 2 33 MHz

PA_ESPI_ENUM_FREQ_50M 3 50 MHz

PA_ESPI_ENUM_FREQ_66M 4 66 MHz

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

PA_APP_ESPI_READ_EMPTY No data was seen.

Details

Only when events of info is PA_EVENT_ESPI_PACKET, pkt_info will be filled
with information.

Configure Simple Trigger (pa_espi_simple_trigger_config)

 int pa_espi_simple_trigger_config
 (PromiraConnectionHandle conn,
 u32 act_on,
 const PromiraEspiPacketMatch * pkt_match,
 u32 actions);

Configure the eSPI simple matching system for triggering.

Arguments

conn handle of the connection

Promira eSPI Analysis User Manual v1.10.000

51

act_on bitmask for trigger conditions described in Table 22

pkt_match trigger conditions for packet described in Table 23

actions bitmask for actions when conditions meet, described in Table 25
Table 22 : bitmask for act_on

PA_ESPI_ACT_ON_DIG_IN_MASK 0x00000fff Do actions on any given
digital inputs

PA_ESPI_ACT_ON_ALERT 0x00010000 Do actions on alert

PA_ESPI_ACT_ON_RESET 0x00040000 Do actions on reset

PA_ESPI_ACT_ON_SLAVE_BITMASK 0xf0000000 Do actions on any events
from specified slaves.

Table 23 : PromiraEspiPacketMatch structure

ch_match_bitmask Bitmask for channels type described in Table 24

cmd_match_type Command match type described in Table 12

cmd_match_val Command match value

Table 24 : bitmask for ch_mask

PA_ESPI_CHANNEL_MATCH_PERIF 0x00000001 Act on any packet from peripheral channel

PA_ESPI_CHANNEL_MATCH_VW 0x00000002 Act on any packet from virtual wire channel

PA_ESPI_CHANNEL_MATCH_OOB 0x00000004 Act on any packet from OOB channel

PA_ESPI_CHANNEL_MATCH_FLASH 0x00000008 Act on any packet from flash channel

PA_ESPI_CHANNEL_MATCH_PERIF 0x00000010 Act on any packet from independent channel

Table 25 : bitmask for actions

PA_ESPI_ACTION_DIG_OUT_MASK 0x00000fff Activate digital output

PA_ESPI_ACTION_TRIGGER 0x80000000 Trigger

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

Promira eSPI Analysis User Manual v1.10.000

52

None.

Details

This function is to trigger or activate digital outputs on the specific conditions

Digital output will not activate on digital input.

Configure Hardware Filter (pa_espi_hw_filter_config)

 int pa_espi_hw_filter_config
 (PromiraConnectionHandle conn,
 u08 slave_id,
 const PromiraEspiPacketMatch * pkt_match);

Configure the eSPI hardware filter.

Arguments

conn handle of the connection

slave_id select slave number to apply filter settings

pkt_match match conditions for packets to be filtered out
described in Table 23

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

This function is to filter out packets that match specific conditions

Read eSPI statistics (pa_espi_stats_read)

 int pa_espi_stats_read (PromiraConnectionHandle conn,
 u08 slave_id,
 PromiraEspiStats * stats);

Read eSPI hardware statistics from the analyzer.

Arguments

conn handle of the connection

Promira eSPI Analysis User Manual v1.10.000

53

slave_id select slave number for statistics

stats statistical counters based on espi events as described in Table 26

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

Read ESPI hardware statistics

struct PromiraEspiStats {
 u32 ch_perif
 u32 ch_vw
 u32 ch_oob
 u32 ch_flash
 u32 get_cfg
 u32 set_cfg
 u32 get_sts
 u32 pltf_reset
 u32 alert
 u32 reset
 u32 cmd_crc
 u32 resp_crc
 u32 fltr_out_pkts
 u32 fltr_out_cmds
};

Table 26 : description of statistical counters stats

ch_perif A count of all peripheral channel packets seen on the
bus

ch_vw A count of all virtual wire channel packets seen on the
bus

ch_oob A count of all OOB channel packets seen on the bus

ch_flash A count of all flash channel packets seen on the bus

get_cfg A count of all GET_CONFIGURATION packets seen on
the bus

set_cfg A count of all SET_CONFIGURATION packets seen on
the bus

Promira eSPI Analysis User Manual v1.10.000

54

get_sts A count of all GET_STATUS packets seen on the bus

pltf_reset A count of platform reset commands (inband reset) seen
on the bus

alert A count of alert events seen on bus

reset A count of reset events seen on bus

cmd_crc A count of all packets with command crc error seen on
the bus

resp_crc A count of all packets with response crc error seen on
the bus

fltr_out_pkts A count of all packets that were filtered out (based on
HW filter configuration)

fltr_out_cmds A count of all packets with a specific command that were
filtered out (based on HW filter configuration)

Configure Advanced Trigger (pa_espi_adv_trig_config)

 int pa_espi_adv_trig_config
 (PromiraConnectionHandle conn,
 u08 salve_id,
 const PromiraEspiAdvancedTrig1 * pkt_adv_trig1_level1,
 const PromiraEspiAdvancedTrig1 * pkt_adv_trig1_level2,
 const PromiraEspiAdvancedTrig1 * pkt_adv_trig1_level3,
 const PromiraEspiAdvancedTrig1 * pkt_adv_trig1_level4,
 const PromiraEspiAdvancedTrig2 * pkt_adv_trig2,
 const PromiraEspiAdvancedTrigError * pkt_adv_trig_error);

Configure the eSPI advanced triggering system.

Arguments

conn handle of the connection

slave_id slave number: 0 for first slave, 1 for
second slave

pkt_adv_trig1_level1 Advanced trigger match conditions
for option 1, level1

pkt_adv_trig1_level2 Advanced trigger match conditions
for option 1, level2

pkt_adv_trig1_level3 Advanced trigger match conditions
for option 1, level3

pkt_adv_trig1_level4 Advanced trigger match conditions
for option 1, level4

Promira eSPI Analysis User Manual v1.10.000

55

pkt_adv_trig2 Advanced trigger conditions for
option 2

pkt_adv_trig_error Advanced trigger conditions for
trigger on error

Return Value

A status code is returned with PA_APP_OK on success.

Specific Error Codes

None.

Details

This function is to trigger and/or activate digital outputs on complex packet matching

Digital output will not activate on digital input.

struct PromiraEspiAdvancedTrigBytes16{
 u08 byte0
 u08 byte1
 u08 byte2
 u08 byte3
 u08 byte4
 u08 byte5
 u08 byte6
 u08 byte7
 u08 byte8
 u08 byte9
 u08 byteA
 u08 byteB
 u08 byteC
 u08 byteD
 u08 byteE
 u08 byteF
};

struct PromiraEspiAdvancedTrigBytes2{
 u08 byte0
 u08 byte1
};

Promira eSPI Analysis User Manual v1.10.000

56

struct PromiraEspiAdvancedTrig1 {
 u08 cmd_byte
 u08 cmd_cyc
 u08 cmd_tag
 u16 cmd_len
 u64 cmd_addr
 PromiraEspiAdvancedTrigBytes16 cmd_data
 PromiraEspiAdvancedTrigBytes16 cmd_data_mask
 u08 rsp_byte
 u08 rsp_cyc
 u08 rsp_tag
 u16 rsp_len
 u64 rsp_addr
 PromiraEspiAdvancedTrigBytes16 rsp_data
 PromiraEspiAdvancedTrigBytes16 rsp_data_mask
 PromiraEspiAdvancedTrigBytes2 sts_byte
 PromiraEspiAdvancedTrigBytes2 sts_mask
 u08 trg_pin
 u08 trg_pin_polarity
 u08 trg_pin_direction
 u08 cmd_byte_enable
 u08 cmd_cyc_enable
 u08 cmd_tag_enable
 u08 cmd_len_enable
 u08 cmd_addr_enable
 u08 cmd_data_enable
 u08 rsp_byte_enable
 u08 rsp_cyc_enable
 u08 rsp_tag_enable
 u08 rsp_len_enable
 u08 rsp_addr_enable
 u08 rsp_data_enable
 u08 sts_byte_enable
 u08 trg_pin_enable
 u08 lvl_select_enable
 u08 lvl_select_immediate
};

Table 27 : PromiraEspiAdvancedTrig1 field descriptions

cmd_byte Command value

cmd_cyc Command header cycle type value

cmd_tag Command header tag value

cmd_len Command header espi length value

Promira eSPI Analysis User Manual v1.10.000

57

cmd_addr Command header address value

cmd_data Command phase data

cmd_data_mask Command phase bitwise enables for data
match

rsp_byte Response value

rsp_cyc Response header cycle type value

rsp_tag Response header tag value

rsp_len Response header espi length value

rsp_addr Response header address value

rsp_data Response phase data

rsp_data_mask Response phase bitwise enables for data
match

sts_byte Status field

sts_mask Bitwise enables for status match

trg_pin Select a digital pin number (0 - 10) to be
driven on a condition match

trg_pin_polarity Polarity of the digital pin

trg_pin_direction Direction of the digital pin

cmd_byte_enable Enable match on a command

cmd_cyc_enable Enable match on cycle type in command
header

cmd_tag_enable Enable match on tag in command header

cmd_len_enable Enable match on espi length in command
header

cmd_addr_enable Enable match on address in command
header

cmd_data_enable Enable match on data in command phase

rsp_byte_enable Enable match on a response

rsp_cyc_enable Enable match on cycle type in response
header

rsp_tag_enable Enable match on tag in response header

rsp_len_enable Enable match on espi length in response
header

rsp_addr_enable Enable match on address in response header

rsp_data_enable Enable match on data in response phase

sts_byte_enable Enable match on status in response phase

Promira eSPI Analysis User Manual v1.10.000

58

trg_pin_enable Enable a digital pin for trigger

lvl_select_enable Enable this level for matching

lvl_select_immediate Set in cases where the packet that matches
this conditions should immediately follow the
packet that matched the previous level's
conditions

struct PromiraEspiAdvancedTrig2 {
 u08 cmd_byte2
 u08 cmd_cyc2
 u08 cmd_tag2
 u16 cmd_len2
 u64 cmd_addr2
 PromiraEspiAdvancedTrigBytes16 cmd_data2
 PromiraEspiAdvancedTrigBytes16 cmd_data_mask2
 u08 trg_pin_req
 u08 trg_pin_req_polarity
 u08 trg_pin_req_direction
 u08 trg_pin_cmpl0
 u08 trg_pin_cmpl0_polarity
 u08 trg_pin_cmpl0_direction
 u08 trg_pin_cmpl1
 u08 trg_pin_cmpl1_polarity
 u08 trg_pin_cmpl1_direction
 u08 trg_pin_cmpl2
 u08 trg_pin_cmpl2_polarity
 u08 trg_pin_cmpl2_direction
 u08 cmd_byte2_enable
 u08 cmd_cyc2_enable
 u08 cmd_tag2_enable
 u08 cmd_len2_enable
 u08 cmd_addr2_enable
 u08 cmd_data2_enable
 u08 succ_cmpl_enable
 u08 unsucc_cmpl_enable
 u08 trg_pin_req_enable
 u08 trg_pin_cmpl0_enable
 u08 trg_pin_cmpl1_enable
 u08 trg_pin_cmpl2_enable
};

Table 28 : PromiraEspiAdvancedTrig2 field descriptions

Promira eSPI Analysis User Manual v1.10.000

59

cmd_byte2 Non-posted request command value

cmd_cyc2 Non-posted request cycle type value

cmd_tag2 Non-posted request tag value

cmd_len2 Non-posted request espi length

cmd_addr2 Non-posted request address

cmd_data2 Non-posted request completion data

cmd_data_mask2 Non-posted request completion bitwise
enables for data match

trg_pin_req Select a digital pin number (0 - 10) to be
driven on a request packet condition
match

trg_pin_req_polarity Polarity of the digital pin

trg_pin_req_direction Direction of the digital pin

trg_pin_cmpl0 Select a digital pin number (0 - 10) to be
driven on a 'first' completion packet match
(if the request has a completion type
'FIRST')

trg_pin_cmpl0_polarity Polarity of the digital pin

trg_pin_cmpl0_direction Direction of the digital pin

trg_pin_cmpl1 Select a digital pin number (0 - 10) to be
driven on the first 'middle' completion
packet match (if the request has a
completion type 'MIDDLE')

trg_pin_cmpl1_polarity Polarity of the digital pin

trg_pin_cmpl1_direction Direction of the digital pin

trg_pin_cmpl2 Select a digital pin number (0 - 10) to be
driven on a 'last' or 'only' completion
packet condition match (the the request
has a completion type 'LAST/ONLY')

trg_pin_cmpl2_polarity Polarity of the digital pin

trg_pin_cmpl2_direction Direction of the digital pin

cmd_byte2_enable Enable match on request command

cmd_cyc2_enable Enable match on request cycle type

cmd_tag2_enable Enable match on request tag value

cmd_len2_enable Enable match on request length value

cmd_addr2_enable Enable match on request address value

Promira eSPI Analysis User Manual v1.10.000

60

cmd_data2_enable Enable match on request completion data
pattern

succ_cmpl_enable Enable match on successful completion

unsucc_cmpl_enable Enable match n ran unsuccessful
condition

trg_pin_req_enable Enable a digital pin for trigger on request

trg_pin_cmpl0_enable Enable a digital pin for trigger on 'first'
completion

trg_pin_cmpl1_enable Enable a digital pin for trigger on the first
'middle' completion

trg_pin_cmpl2_enable Enable a digital pin for trigger on 'last' or
'only' completion

struct PromiraEspiAdvancedTrigError {
 u08 err_code
 u08 err_code_enable
};

Table 29 : PromiraEspiAdvancedTrigError field descriptions

err_code Error code value for match

err_code_enable Enable match on packet error status

6.7 Error Codes

Table 30 : eSPI Analysis Application Error Codes

Literal Name Value pa_app_status_string() return value

PA_APP_OK 0 ok

PA_APP_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

PA_APP_UNABLE_TO_LOAD_DRIVER -2 unable to load USB driver

PA_APP_UNABLE_TO_LOAD_FUNCTION -3 unable to load binding function

Promira eSPI Analysis User Manual v1.10.000

61

PA_APP_INCOMPATIBLE_LIBRARY -4 incompatible library version

PA_APP_INCOMPATIBLE_DEVICE -5 incompatible device version

PA_APP_COMMUNICATION_ERROR -6 communication error

PA_APP_UNABLE_TO_OPEN -7 unable to open device

PA_APP_UNABLE_TO_CLOSE -8 unable to close device

PA_APP_INVALID_HANDLE -9 invalid device handle

PA_APP_CONFIG_ERROR -10 configuration error

PA_APP_MEMORY_ALLOC_ERROR -11 unable to allocate memory

PA_APP_UNABLE_TO_INIT_SUBSYSTEM -12 unable to initialize subsystem

PA_APP_INVALID_LICENSE -13 invalid license

PA_APP_UNKNOWN_PROTOCOL -14 unknown promira protocol

PA_APP_STILL_ACTIVE -15 promira still active

PA_APP_INACTIVE -16 promira inactive

PA_APP_FUNCTION_NOT_AVAILABLE -17 promira function not available

PA_APP_READ_EMPTY -18 nothing to read

PA_APP_TIMEOUT -31 timeout to collect a response

PA_APP_CONNECTION_LOST -32 connection lost

PA_APP_QUEUE_FULL -50 queue is full

PA_APP_UNKNOWN_CMD -83 unknown command sent

Promira eSPI Analysis User Manual v1.10.000

62

7 Electrical Specifications

7.1 DC Characteristics

Table 31 : Absolute Maximum Rating

Symbol Parameter Conditions
and Notes

Min Max Units

V Input voltage (1, 3, 9, 14, 15, 17, 19,
20, 26, 31, 32, 33 pins)

-0.5 5.5 V

V Input voltage (5, 7, 8, 11, 13, 21, 23,
25, 27, 29 pins)

-0.5 4.6 V

Table 32 : Operating Conditions

Symbol Parameter Conditions
and Notes

Min Max Units

T Ambient Operating Temperature 10 (50) 35 (95) C (F)

I Core Current Consumption (1) 500 mA

Note:

(1) The core current consumption includes the current consumption for the entire internal Promira
platform. Typical current consumption example at 5 V with 66 MHz single eSPI master read
operation is 340 mA using USB connection. Add 70 mA for operation with gigabit Ethernet
connection.

Table 33 : DC Characteristics (1)

Symbol Parameter Conditions
and Notes

Min Max Units

V Target power voltage (4 and 6 pins) 3.3 5.0 V

V IO power voltage (22 and 24 pins) 1.8 1.8 V

V Input low voltage (1, 3 pins) -0.5 0.45 V

V Input high voltage (1, 3 pins) 1.26 5.5 V

V Output low voltage (1, 3 pins) 0.2 V

Promira eSPI Analysis User Manual v1.10.000

IO

IO

a

Core

VTGT

VIO

IL

IH

OL

63

V Output high voltage (1, 3 pins) (1) V

V Input low voltage (5, 7, 8, 11, 13, 21,
23, 25, 27, 29 pins)

0.63 V

V Input high voltage (5, 7, 8, 11, 13,
21, 23, 25, 27, 29 pins)

1.17 V

V Output low voltage (5, 7, 8, 11, 13,
21, 23, 25, 27, 29 pins)

0.5 V

V Output high voltage (5, 7, 8, 11, 13,
21, 23, 25, 27, 29 pins)

1.25 V

V Input low voltage (9, 14, 15, 17, 19,
20, 26, 31, 32, 33 pins)

0.18 V

V Input high voltage (9, 14, 15, 17, 19,
20, 26, 31, 32, 33 pins)

1.62 V

V Output low voltage (9, 14, 15, 17,
19, 20, 26, 31, 32, 33 pins)

0.18 V

V Output high voltage (9, 14, 15, 17,
19, 20, 26, 31, 32, 33 pins)

1.62 V

I Target power current (4 and 6 pins) (2) 50 mA

I IO power current (22 and 24 pins) (2) 50 mA

I Input/output current (eSPI pins) 10 mA

I Input/output leakage current (eSPI
pins)

100 uA

C Input/output capacitance (eSPI pins) 1 MHz 2 12 pF

Notes:

(1) Outputs are open collector, and therefor they are set by their pull-ups values and pull-ups
voltage rail.

(2) Option 1: Two pins have 50 mA each. Option 2: One pin has 100 mA, and one pin has 0 mA,
etc. Total current consumption on both pins should not exceed 100 mA.

Table 34 : Current Consumption Calculation Example

Pin Symbol Description Conditions &
Notes

Max
all

pins

Units

NA I Core Current
Consumption

(1) 500 mA

Promira eSPI Analysis User Manual v1.10.000

OH

IL

IH

OL

OH

IL

IH

OL

OH

VTGT

VIO

I

L

IN

Core

64

4, 6 V Target Power (2) 100 mA

22, 24 V IOPower (2) 100 mA

15, 31, 17,
19, 21, 23,
20, 25, 27,
29, 33, 26,
32

Reset[0:1], DIO[0:10] eSPI Reset and
Digital IO Signals

(3) 60 mA

Total Current
Consumption For
Promira Core and
Outputs

(4) 760 mA

Notes:

(1) The core current consumption includes the current consumption for the entire internal Promira
platform, but does not include the output signals current consumption.

(2) Option 1: Two pins have 50 mA each. Option 2: One pin has 100 mA, and one pin has 0 mA.
Etc. Total current consumption on both pins should not exceed 100 mA.

(3) Option 1: Six pins have 10 mA each. Option 2: One pin has 60 mA, and the other pins have 0
mA. Etc. Total current consumption on all pins should not exceed 60 mA.

(4) If the total current consumption for the Promira platform core and outputs is over 500 mA, then a
USB 3.0 port and USB 2.0 cable or Total Phase external AC adapter should be used. A USB 3.0
port supplies up to 900 mA. A USB 2.0 port supplies up to 500 mA. Total Phase external AC
adapter supplies up to 1.2 A. In this example the total current consumption for the Promira platform
core and outputs is 760 mA, therefor USB 3.0 port and USB 2.0 cable or Total Phase external AC
adapter should be used.

7.2 Signal Ratings

7.2.1 Logic high Levels

All input / outputs signal levels are nominally 1.8V (+/-10%) logic high.

7.2.2 ESD protection

The Promira Serial Platform has built-in electrostatic discharge protection to prevent damage to the
unit from high voltage static electricity.

Promira eSPI Analysis User Manual v1.10.000

TGT

IO

65

8 Legal / Contact

8.1 Disclaimer

All of the software and documentation provided in this manual, is copyright Total Phase, Inc.
("Total Phase"). License is granted to the user to freely use and distribute the software and
documentation in complete and unaltered form, provided that the purpose is to use or evaluate Total
Phase products. Distribution rights do not include public posting or mirroring on Internet websites.
Only a link to the Total Phase download area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general, incidental, or
consequential damages arising from the use of its site, the software or documentation downloaded
from its site, or any derivative works thereof, even if Total Phase or distributors have been advised
of the possibility of such damage. The software, its documentation, and any derivative works is
provided on an "as-is" basis, and thus comes with absolutely no warranty, either express or implied.
This disclaimer includes, but is not limited to, implied warranties of merchantability, fitness for any
particular purpose, and non-infringement. Total Phase and distributors have no obligation to provide
maintenance, support, or updates.

Information in this document is subject to change without notice and should not be construed as a
commitment by Total Phase. While the information contained herein is believed to be accurate,
Total Phase assumes no responsibility for any errors and/or omissions that may appear in this
document.

8.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life support
devices or systems include, but are not limited to, surgical implants, medical systems, and other
safety-critical systems in which failure of a Total Phase product could cause personal injury or loss
of life. Should a Total Phase product be used in such an unauthorized manner, Buyer agrees to
indemnify and hold harmless Total Phase, its officers, employees, affiliates, and distributors from
any and all claims arising from such use, even if such claim alleges that Total Phase was negligent
in the design or manufacture of its product.

8.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have support-related
questions, please go to the Total Phase support page at http://www.totalphase.com/support/. For
sales inquiries, please contact sales@totalphase.com.

Promira eSPI Analysis User Manual v1.10.000

66

http://www.totalphase.com/
http://www.totalphase.com/support/
mailto:sales@totalphase.com

©2003-2016 Total Phase, Inc.
All rights reserved.

Promira eSPI Analysis User Manual v1.10.000

67

	Promira Serial Platform – eSPI Analysis Application
	1 Revision History
	1.1 Changes in version 1.10
	1.2 Changes in version 1.00

	2 General Overview
	2.1 eSPI Background
	2.1.1 eSPI Overview
	Comparing eSPI and SPI

	2.1.2 eSPI Architecture
	eSPI Topology
	eSPI Architecture Description

	2.1.3 eSPI Operations Theory
	Command Phase
	Turn-Around (TAR) Phase
	Response Phase
	Slave-initiated transactions
	Channels
	Link Layer
	Single IO mode
	Dual IO mode
	Quad IO mode

	2.1.4 eSPI References

	3 Hardware Specification
	3.1 Pinout
	3.1.1 Connector Specification
	3.1.2 Orientation
	3.1.3 Pin Description

	3.2 LEDs
	3.3 Speeds
	3.4 Digital I/O
	3.5 On-board Buffer

	4 Device Operation
	4.1 Capture Mode
	4.2 General Device Features
	4.3 Digital IO
	4.4 Match/Action System
	4.4.1 eSPI Simple Match
	4.4.2 eSPI Advanced Match
	4.4.3 eSPI Hardware filters

	4.5 Hardware Statistics

	5 Software
	5.1 Rosetta Language Bindings: API Integration into Custom Applications
	5.1.1 Overview
	5.1.2 Versioning
	5.1.3 Customizations

	6 API Documentation
	6.1 Introduction
	6.2 General Data Types
	6.3 Notes on Status Codes
	6.4 Application Management Interface
	6.5 General Application Interface
	6.5.1 General Application
	Overview
	Software Operational Overview
	Connect to the Application (pa_app_connect)
	Disconnect to the Application (pa_app_disconnect)
	Version (pa_app_version)
	Status String (pa_app_status_string)
	Get Features (pa_app_features)

	6.5.2 Configuration
	Target Power (pa_phy_target_power)
	Level Shift (pa_phy_level_shift)

	6.5.3 Monitoring API
	Start Capture (pa_capture_start)
	Trigger Capture (pa_capture_trigger)
	Wait for Capture to Trigger (pa_capture_trigger_wait)
	Stop Capture (pa_capture_stop)
	Query Capture Status (pa_capture_status)
	Configure Capture Buffer (pa_capture_buffer_config)
	Query Capture Buffer Config (pa_capture_buffer_config_query)

	6.5.4 Digital I/O Functions
	Configure Digital I/O (pa_digital_io_config)
	Query Digital I/O Config (pa_digital_io_config_query)

	6.5.5 Notes on Protocol-Specific Read Functions

	6.6 eSPI API
	6.6.1 Notes
	6.6.2 eSPI Monitor Interface
	Set Operating Configuration (pa_espi_operating_config)
	Read Operating Configuration (pa_espi_operating_config_read)
	Read eSPI (pa_espi_read)
	Configure Simple Trigger (pa_espi_simple_trigger_config)
	Configure Hardware Filter (pa_espi_hw_filter_config)
	Read eSPI statistics (pa_espi_stats_read)
	Configure Advanced Trigger (pa_espi_adv_trig_config)

	6.7 Error Codes

	7 Electrical Specifications
	7.1 DC Characteristics
	7.2 Signal Ratings
	7.2.1 Logic high Levels
	7.2.2 ESD protection

	8 Legal / Contact
	8.1 Disclaimer
	8.2 Life Support Equipment Policy
	8.3 Contact Information

